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Abstract

The recently developed multiphase field method, describing the interaction between an arbitrary number of individual
phase fields with individual characteristics, is reformulated by the use of interface fields. This reformulation allows for the
decomposition of the nonlinear multiphase field interactions into pairwise interaction of interface fields. This removes some
difficulties in the treatment of triple points or higher order interactions that occurred in the original model. The interface

fields being defined in a(Ñ2 ) dimensional space, wherẽN is the order of the multiple point, can be interpreted being the
generalized coordinates for this variational problem. The considered example of a multiphase change problem indicates
clearly that a relaxation ansatz for the evolution of the field variables towards the minimum of the free energy is warranted
only for generalized coordinates, while a relaxation ansatz using functionally dependent variables and the Lagrange formalism
in general mixes time and energy scales. ©1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The multiphase field theory [1] was originally developed for the description of first order phase transformations
in a system containingN > 2 different phasesφα, φβ, . . . , φN and their gradients∇φα,∇φβ, . . . ,∇φN . The
equations of motion of theφα towards the minimum of the free energyF are derived using a relaxation ansatz

τ φ̇α =
(

∇ ∂

∂∇φα − ∂

∂φα

)
f ({φα}), (1)

wheref ({φα}) denotes the Gibbs free energy density of theN phase system as defined in [1],τ is a relaxation
constant.
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Since in a multiphase problem the{φα} are connected by the constraint

N∑
α=1

φα = 1 (2)

or

N∑
α=1

φ̇α = 0, (3)

theφα are not independent field variables.
In the original model [1] the nonlinearities arising from this fact were attributed to triple point energies and

energies of multiple interactions of higher order. According to the physical assumption that these energies have
negligible influence on the total energy of the system, the corresponding nonlinearities were neglected.

Garcke et al. [2] have shown that this approximation violates conservation of interfacial stresses at multiple points
(Young’s law). As an explanation for this violation one may consider that the phase boundaries in equilibrium are
straight lines (2D) or planes (3D) and the angles between the boundaries are independent of the length scale. On
the scale of the phase boundary thickness, the multiple phase point then fills the whole volume under consideration.
Thus the multiple phase energies will influence the local physics significantly, though they are negligible in the
system altogether.

By use of a Lagrange multiplierλ and treating theN phasesα = 1, . . . , N independent, the equations of motion
of theφα are found:

τ φ̇α =
(

∇ ∂

∂∇φα − ∂

∂φα

)(
f ({φα})+ λ

(
N∑
1

φα − 1

))
=
(

∇ ∂

∂∇φα − ∂

∂φα

)
f ({φα})+ λ. (4)

The Lagrange multiplierλ accounts for the constraint (2) or (3).
It was shown by Garcke et al. [2] that the ansatz (4) conserves the interfacial stress balance in the sharp interface

limit with isotropic interfaces and by Nestler and Wheeler [3] that it holds also for arbitrary interface anisotropy.
There arise however two severe problems. The first is the definition of the relaxation constantτ in (4). As it

is well known, the relaxation rate of an interface into equilibrium strongly depends on the type of interface, e.g.
solid–liquid or solid–solid. The right-hand side of (4), however – besides the pairwise contributions related to one
type of interface, that were used in the original model – contains higher order contributions, related to triple points.
These contributions can hardly be attributed with an individual timescale. Therefore a decomposition of these terms
related to specific boundariesα ↔ β is necessary.

The second problem is the coupling of the phase field equations (4) to outer fields like temperature. The phase
changeα → β results in a local energy changeδE related to the latent heat of that specific phase changeLαβ ,
while there is no evidence that a multiple phase change can be related to a triple energyL̃αβγ . Again therefore
decomposing (4) into pairwise contributions is necessary.

In fact, these problems are two facets of the same difficulty: how to fix the time and energy scale of a multiple
phase change in a multiphase system. In this paper, a formal transformation of the phase field variablesφα onto a
set of(N2 ) interfacial field variablesψαβ is described, that allows for the decomposition of (4) in the desired way.
Moreover, this transformation leads to a definition of the multiphase change problem in a(N2 ) dimensional space
being more general than the original definition on theN − 1 manifold of theN phase system, connected by the
constraint (2).
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2. The phase field variablesφαφαφα of a multiphase system and the free energy functionalFFF

In the classical phase field theory [4,5], the phase field variableφ(x, t) is defined as a continuous function in space
and time on an Euclidean point spaceΩ. φ may be identified with the solid density that varies continuously from 1
(solid) to 0 (liquid) over the interface region with a thicknessδ. The liquid density is then given by 1− φ(x, t), and
φ(1 − φ) may be interpreted as the interface density. Values ofφ(x, t) < 0 andφ(x, t) > 1 are formally allowed
but considered to be non-physical.

The multiphase system may be described by a set ofN phase field variablesφα, α = 1, . . . , N , where each phase
field is associated with the local density of a different phase and they are connected by the constraint (2).

We then define the open spacesΩ̃α ∈ Ω where 0< φα < 1 onΩ̃α and the step functionσα:

σα =
{

1 on Ωα,

0 elsewhere,
(5)

whereΩα is the open spacẽΩα plus its boundary. The closed spacesΩα may be separated or overlapping and they
change according to the evolution of theφα. We then define the number of locally present phasesÑ(x, t) by

Ñ(x, t) =
N∑
α=1

σα(x, t), (6)

and the constraint (2) reduces to

Ñ∑
α=1

φα(x, t) = 1. (7)

The number of locally present phasesÑ is 2 on dual interfaces, 3 on triple points and so on.
The total free energyF is given by the volume integral over the kinetic and potential free energy densities.

F({φα}) =
∫
Ω

(f kin + f pot)dV =
∫
Ω

f dV. (8)

We here use the explicit forms for thermodynamic equilibrium

f kin =
N∑
γ=1

N∑
δ=γ+1

−εγ δ
2

∇φγ∇φδ, (9)

f pot =
N∑
γ=1

N∑
δ=γ+1

γγ δ|φγ ||φδ|. (10)

The kinetic energy is a linearization of the expressionεγ δ(φγ∇φδ − φδ∇φγ ) used in the original model1 , and the
piecewise bilinear potential replaces the double well potentialγφ2

αφ
2
β (see Figs. 1(a) and (b)). The explicit form of

f kin andf pot is of minor importance for the method presented here. It is, however, considered to be essential for a
multiphase method that the transition regions between the phases are finite, i.e. theφα(x, t) have to converge to 1
or to 0 on a finite regionΩα < Ω. Otherwise, all phases would overlap and the multiple point of orderN would
extend over the whole domainΩ (see Fig. 2).

1 This expression was suggested by G.J. Schmitz, who significantly contributed to the development of the presented model.
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Fig. 1. (a) Piecewise “bi-linear” potential in theα–β plane, (b) Piecewise “tri-linear” potential.

The existence of finite transition regionsΩα < Ω is ensured by the potential (10) because of the finite derivative
at the minima off pot

∂f pot

∂φα

∣∣∣∣
φα=0
φα=1

6= 0. (11)

In general, we assumẽN < N , while Ñ = N is included in the method as a limiting case.
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Fig. 2. The regionsΩα andΩβ , where the phase fieldsφα or φβ are non-zero, overlap in the definition regionΩα ∩Ωβ of the interface fields
ψαβ . The interface fieldsψαβ,ψαγ andψβγ overlap in the triple pointΩα ∩Ωβ ∩Ωγ .

3. The interface fieldsψαβψαβψαβ and their equations of motion

As can be seen from the constraint (2) resp. (7) the{φα} do not form an independent set of functional variables
of the multiphase system. They are defined on aÑ − 1 dimensional manifold.

For Ñ phases(Ñ2 ) interfaces between two phasesα andβ can be formed. We define a set of(Ñ2 ) antisymmetric
interface fields{ψαβ}, α < β and its complement{ψ̃βα}, α < β, ψ̃βα = −ψαβ . In the following we skip the tilde
on the complement. For̃N = 2 a unique interface fieldψαβ can be defined on the basis ofφα andφβ :

ψαβ = φα − φβ. (12)

Application of (12) forÑ > 2 projects the phase field distribution{φα} into aN − 1 dimensional subspace of the
ψαβ that again is connected by the constraint (2) as (12) is a linear transformation.

The reverse transformation is

φα = 1

Ñ


 Ñ∑
β=1

ψαβ + 1


 . (13)

On the subspace defined by (12), the equations of motion of theψαβ are found via a detour over the Lagrange
density of theφα.

The Lagrange densityl, that enforces the constraint (7), is defined

l = f + λ


 Ñ∑
α=1

φα − 1


 . (14)

The minimum of the free energy functionalF with respect to the variation of the phase fieldφα may then be found
from the integrated Lagrange functionalL = ∫

Ω
ldV ,

0 = − δL

δφα
=
(

∇ ∂

∂∇φα − ∂

∂φα

)
l, (15)

and treating the phase fieldsφα to be independent,
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δφα

δφβ
= δαβ (16)

with the Kronecker symbolδαβ . We then make the relaxation ansatz

◦
φα = − δL

δφα
= − δF

δφα
− λ, (17)

whereφ
◦
α denotes the motion of theφα towards the minimum ofF without specifying a timescaleτ .

It is then obvious that

◦
ψαβ = ◦

φα − ◦
φβ = − δF

δφα
+ δF

δφβ
(+λ− λ) (18)

is independent of the Lagrange multiplierλ.
The independence of (18) from the Lagrange multiplier indicates that theψαβ can be considered as generalized

coordinates. In fact, it can be calculated explicitly that any realization of the{ψαβ}, ψαβ ∈ R leads to a set ofφα
that is compatible with the constraint (2), though onlyψαβ ∈ [0,2] can be considered physically:

Ñ∑
α=1

φα − 1 = 1

Ñ

Ñ∑
α=1


 Ñ∑
β=1

ψαβ + 1


− 1 = 1

Ñ

Ñ∑
α=1

Ñ∑
β=1

ψαβ = 0 (19)

because of the antisymmetry of theψαβ .
Thus, theN − 1 dimensional subspace of theψαβ in the(N2 ) dimensional space can be left and theψαβ can be

varied independently. Of course (12) is then no longer valid and an explicite rule for transforming the{φα} → {ψαβ}
can no longer be given, as it would be (forÑ > 2) a transformation into a higher dimensional space. The reverse

transformation{ψαβ} → {φα} (13) must then be interpreted as a projection from the(Ñ2 ) dimensional space of the
{ψαβ} into theÑ dimensional space of the{φα}. This projection, by its definition, conserves the constraint (2).

Treating theψαβ linearly independent and using the antisymmetry of theψαβ we have

δψαβ

δψγ δ
= δαγ δβδ − δαδδβγ , (20)

δ

δψαβ
=
∑
γ

δφγ

δψαβ

δ

δφγ
= 1

Ñ

∑
γ

∑
δ

δψγ δ

δψαβ

δ

δφγ
= 1

Ñ

(
δ

δφα
− δ

δφβ

)
. (21)

The motion
�
ψαβ can be calculated as

�
ψαβ = − δL

δψαβ
= 1

Ñ

(
− δF

δφα
+ δF

δφβ
(+λ− λ)

)
. (22)

Comparing (22) and (18) we find that the motion
◦
φαβ and

�
ψαβ scales by a factor 1/Ñ . This scaling can be understood

by two reasons. First

◦
ψαβ =

(
∂

∂φα
− ∂

∂φβ

)
F (23)

and

�
ψαβ = ∂

∂ψαβ
F (24)
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differ by a factor 2, as the definition range of values of theψαβ andφα differs by a factor 2. For̃N = 2 we have by
the definition (12)

δψαβ = 2δφα = −2δφβ. (25)

For Ñ > 2 we may put

Ñ = 2

(
Ñ

2

)
= 2

(
Ñ

2

)
N − 1

, (26)

i.e. the motions
◦
ψαβ and

�
ψαβ scale, besides the factor 2 due to the difference in definition range, according to the

ratios of the dimensions of the spaces(Ñ2 ) for {ψαβ} and(N − 1) for {φα}, and we have

�
ψαβ = (Ñ − 1)

2 ·
(
Ñ

2

) ◦
ψαβ = 1

Ñ

◦
ψαβ. (27)

The consistency of this result can easily be checked by comparing the equations of motion of theφ̇α on the physical
timescaleτ set alike for all interfaces

ταβ ≡ τ. (28)

The standard treatment via the Lagrange formalism (4) then gives

φ̇α = − ∂

∂φα
F + λ, (29)

λ = 1

Ñ

Ñ∑
β=1

∂

∂φβ
F, (30)

τ φ̇α = − ∂

∂φα
F + 1

Ñ

Ñ∑
β=1

∂

∂φβ
F = − Ñ − 1

Ñ

∂

∂φα
F + 1

Ñ

∑
β 6=α

∂

∂φβ
F = − 1

Ñ

∑
β 6=α

(
∂

∂φα
− ∂

∂φβ

)
F. (31)

The same result is obtained from (18) using (13) or from (22) using (13) and (27):

τ φ̇α = ◦
φα = 1

Ñ

Ñ∑
β=1

◦
ψαβ =

Ñ∑
β=1

�
ψαβ = − 1

Ñ

∑
β 6=α

(
∂

∂φα
− ∂

∂φβ

)
F. (32)

In the general case, where the timescalesταβ differ for the different interfaces, we now can specify the total timescale

φ̇α = 1

Ñ

∑
β 6=α

ψ̇αβ = 1

Ñ

∑
β 6=α

1

ταβ

◦
ψαβ =

∑
β 6=α

1

ταβ

�
ψαβ. (33)

In the same way the energy scale can be fixed

q̇α = 1

Ñ

∑
β 6=α

Lαβψ̇αβ =
∑
β 6=α

Lαβ

ταβ

�
ψαβ, (34)

whereq̇α is the release or consumption of latent heat associated with the phase changeφα.
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For the special model of the free energy functional (9) and (10) we may evaluate explicitly

ψ̇αβ = σασβ

ταβ


∑
γ 6=α

σγ

(
−εαγ

2
∇2φγ − γαγ φγ

)
−
∑
γ 6=β

σγ

(
−εβγ

2
∇2φγ − γβγ φγ

) . (35)

4. Interpretation of the interface fieldsψαβψαβψαβ

The interface fieldsψαβ are by their definition restricted to the finite interface regionsΩα ∩Ωβ .
At dual phase boundariesα ↔ β only one interface fieldψαβ is defined locally. At triple pointsα ↔ β ↔ γ

three interface fields overlapψαβ , ψαγ , ψβγ , and at multiple points of order̃N , (Ñ2 ) interface fields overlap.
The most remarkable feature of these fields is the fact that a variationδψαβ at a multiple point, where e.g.

0< φγ , φα, φβ < 1, only affects the phasesφα andφβ , but is influenced byφγ .φγ itself, however, is not influenced
by δψαβ . φγ is only changed byδψαγ or δψβγ . The sum over all possible variationsδψαβ , δψαγ , δψβγ describes
the whole variational problem. The timescale and the energy scale of the individual phase transformations can now
be fixed in a unique way.

The release (or consumption) of latent heatq̇ of a multiple point of orderÑ is then given by

q̇ =
Ñ∑
α=1

q̇α =
Ñ∑
α=1

Ñ∑
β>α

Lαβψ̇αβ =
Ñ∑
α=1

Ñ∑
β>α

Lαβ

ταβ

◦
ψαβ, (36)

where
◦
ψαβ in general is a nonlinear function of all present phases, and theLαβ andταβ are the latent heat contributions

and relaxation rates of the individual phase changes.
This is the desired decomposition of the multiple phase interactions at triple points into dual contributions. On the

other hand, the static asymptotics of the multiphase theory is unchanged, i.e. the proof of stress balance at multiple
points as given in [2,3] is still valid.

The derivation of the generalized model is possible in two ways: either treating the interface fields as linear
transformations of the phase fields or treating them linearly independent in space of higher dimension(N2 ). Though
both interpretations lead to the same result, we feel that the interpretation ofψαβ being linearly independent is
more general. Especially this interpretation removes the unaestatic feature of the linear scheme, that the equations
of motion depend on the order of the multiphase point (see Eqs. (33) and (34)). This is achieved by rescaling the
time unit according to the ratios of the dimensions of the different spaces (27).

Additionally, the treatment is very general and not restricted to a certain free energy functional. We therefore
feel that this scheme can have a wider application in many body theories besides the application to the multiphase
change problem presented here.

In particular, the considered example indicates clearly that a relaxation ansatz in a field theory with multiple
interacting fields is warranted only for a set of functionally independent fields and the Lagrange formalism has to
be treated carefully with respect to the setting of time and energy scales.

5. Conclusion

A generalized field method for multiphase transformations is derived using interface fields. The interface fields
ψαβ may either be treated as linear transformations of the phase fieldsφα or as linear independent fields defined in
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a (Ñ2 ) dimensional space, in general being of higher dimension than the dimensionÑ − 1 of the manifold of the
phase fieldsφα. In both cases, the interface fields are seen to be generalized coordinates of the variational problem.

Not using these generalized coordinates, but using the Lagrange formalism and treating the basic variablesφα

independent is shown to mix time and energy scales.
The practical relevance of this model is that the time and energy scales of a multiphase change problem can be

attributed uniquely to individual dual phase changes, and the whole multiphase problem is decomposed into a sum
of dual phase changes.
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