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Abstract

The recently developed multiphase field method, describing the interaction between an arbitrary number of individual
phase fields with individual characteristics, is reformulated by the use of interface fields. This reformulation allows for the
decomposition of the nonlinear multiphase field interactions into pairwise interaction of interface fields. This removes some
difficulties in the treatment of triple points or higher order interactions that occurred in the original model. The interface
fields being defined in &') dimensional space, wheré is the order of the multiple point, can be interpreted being the
generalized coordinates for this variational problem. The considered example of a multiphase change problem indicates
clearly that a relaxation ansatz for the evolution of the field variables towards the minimum of the free energy is warranted
only for generalized coordinates, while a relaxation ansatz using functionally dependent variables and the Lagrange formalism
in general mixes time and energy scales. ©1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The multiphase field theory [1] was originally developed for the description of first order phase transformations
in a system containingy > 2 different phaseg,, ¢g, ... , ¢x and their gradient¥ ¢, Vg, ... , Voy. The
equations of motion of the, towards the minimum of the free energyare derived using a relaxation ansatz

. d 0
TPy = <V3V¢a - 3¢o¢> f{da)), 1)

where f ({¢,}) denotes the Gibbs free energy density of thphase system as defined in [%]js a relaxation
constant.
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Since in a multiphase problem tke, } are connected by the constraint

N
Y e =1 @)
a=1
or
N .
Z d’a = 07 (3)
a=1

the ¢, are not independent field variables.

In the original model [1] the nonlinearities arising from this fact were attributed to triple point energies and
energies of multiple interactions of higher order. According to the physical assumption that these energies have
negligible influence on the total energy of the system, the corresponding nonlinearities were neglected.

Garcke et al. [2] have shown that this approximation violates conservation of interfacial stresses at multiple points
(Young's law). As an explanation for this violation one may consider that the phase boundaries in equilibrium are
straight lines (2D) or planes (3D) and the angles between the boundaries are independent of the length scale. On
the scale of the phase boundary thickness, the multiple phase point then fills the whole volume under consideration.
Thus the multiple phase energies will influence the local physics significantly, though they are negligible in the
system altogether.

By use of a Lagrange multiplierand treating thé&\ phasest = 1, ... , N independent, the equations of motion
of the¢,, are found:
9 ) al 9 )
.C( =\V—— - o A o — 1 =V — » A. 4
4 ( Ven 8%) <f({¢ b+ (;p )) < Ven 8%) fgah) + )

The Lagrange multipliex accounts for the constraint (2) or (3).

It was shown by Garcke et al. [2] that the ansatz (4) conserves the interfacial stress balance in the sharp interface
limit with isotropic interfaces and by Nestler and Wheeler [3] that it holds also for arbitrary interface anisotropy.

There arise however two severe problems. The first is the definition of the relaxation canstai). As it
is well known, the relaxation rate of an interface into equilibrium strongly depends on the type of interface, e.g.
solid—liquid or solid—solid. The right-hand side of (4), however — besides the pairwise contributions related to one
type of interface, that were used in the original model — contains higher order contributions, related to triple points.
These contributions can hardly be attributed with an individual timescale. Therefore a decomposition of these terms
related to specific boundaries< g is necessary.

The second problem is the coupling of the phase field equations (4) to outer fields like temperature. The phase
changex — B results in a local energy chand& related to the latent heat of that specific phase chdnge
while there is no evidence that a multiple phase change can be related to a triple é&y@rgﬁgain therefore
decomposing (4) into pairwise contributions is hecessary.

In fact, these problems are two facets of the same difficulty: how to fix the time and energy scale of a multiple
phase change in a multiphase system. In this paper, a formal transformation of the phase field variahies
set of(fz") interfacial field variablegy,g is described, that allows for the decomposition of (4) in the desired way.
Moreover, this transformation leads to a definition of the multiphase change probleté’)rdanensional space
being more general than the original definition on the- 1 manifold of theN phase system, connected by the
constraint (2).
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2. The phase field variableg, of a multiphase system and the free energy functionafF

Inthe classical phase field theory [4,5], the phase field varigapier) is defined as a continuous function in space
and time on an Euclidean point spa@e¢ may be identified with the solid density that varies continuously from 1
(solid) to O (liquid) over the interface region with a thicknés3 he liquid density is then given by-1¢ (x, ¢), and
¢ (1 — ¢) may be interpreted as the interface density. Values(®f t) < 0 and¢ (x, t) > 1 are formally allowed
but considered to be non-physical.

The multiphase system may be described by a Sdfaifase field variableg,,« = 1, ... , N, where each phase
field is associated with the local density of a different phase and they are connected by the constraint (2).

We then define the open spaa@s € £2 where O< ¢, < 1 on2, and the step functiosy:

o 1 on £2,,
“7 10 elsewhere

®)

whereg2,, is the open spac®, plus its boundary. The closed spasgs may be separated or overlapping and they
change according to the evolution of the. We then define the number of locally present phages r) by

N
N(x. 1) =Y oulx, 1), (6)

a=1

and the constraint (2) reduces to

N
> alx.r) =1. 7
a=1

The number of locally present phasess 2 on dual interfaces, 3 on triple points and so on.
The total free energf is given by the volume integral over the kinetic and potential free energy densities.

F({$a)) = / (" + P dv = / fav. ®)
Q Q2
We here use the explicit forms for thermodynamic equilibrium
] N N Es

=303 5 Ve Vs, 9)
y=16=y+1
N N

=" wysleyligs). (10)
y=1é=y+1

The kinetic energy is a linearization of the expressipf(¢, Vés — ¢s V¢, ) used in the original modél, and the
piecewise bilinear potential replaces the double well potemjﬁbg (see Figs. 1(a) and (b)). The explicit form of

KN and £P°t is of minor importance for the method presented here. It is, however, considered to be essential for a
multiphase method that the transition regions between the phases are finite,¢guthe have to converge to 1

or to 0 on a finite regio2,, < £2. Otherwise, all phases would overlap and the multiple point of dxteould

extend over the whole domain (see Fig. 2).

1 This expression was suggested by G.J. Schmitz, who significantly contributed to the development of the presented model.
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Fig. 1. (a) Piecewise “bi-linear” potential in the-8 plane, (b) Piecewise “tri-linear” potential.

The existence of finite transition regiofs, < £2 is ensured by the potential (10) because of the finite derivative
at the minima offP°

afpot
o e 2O (12)

=0
$a=1

In general, we assumeé < N, while N = N is included in the method as a limiting case.
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Fig. 2. The regions2,, and g, where the phase fields, or ¢4 are non-zero, overlap in the definition regiiy, N £24 of the interface fields
Vap. The interface fieldsr,g, Yo, andyg, overlap in the triple poin2, N 25 N 2,
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3. The interface fieldsyyg and their equations of motion

As can be seen from the constraint (2) resp. (7){thg do not form an independent set of functional variables
of the multiphase system. They are defined ovi & 1 dimensional manifold. i

For N phases{’z\’ ) interfaces between two phasesndp can be formed. We define a set@’f) antisymmetric
interface fieldvyqg}, @ < B and its complemer{t@ﬁa},a < B, &ﬁa = —Y,p. In the following we skip the tilde
on the complement. Fav¥ = 2 a unique interface fielghos can be defined on the basisdyf andgg:

I/Iaﬂ = ¢01 - ¢/3- (12)

Application of (12) forN > 2 projects the phase field distributi¢g, } into aN — 1 dimensional subspace of the
Yqp that again is connected by the constraint (2) as (12) is a linear transformation.
The reverse transformation is

1 N
b == D Vap+1]. (13)
N\iz

On the subspace defined by (12), the equations of motion aftpeare found via a detour over the Lagrange
density of thep,,.
The Lagrange density that enforces the constraint (7), is defined

N
I=f 41 |Y da—1]. (14)

a=1

The minimum of the free energy functiorfawith respect to the variation of the phase figljdmay then be found
from the integrated Lagrange functionalk= [ ,/dV,

oz—féz(v 9 —Jl)h (15)
3¢ OVdy  IPa

and treating the phase fielgs to be independent,
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Y _s 16
spg P (16)
with the Kronecker symbdl,z. We then make the relaxation ansatz
° 3L SF
$¢ 8¢

whereg,, denotes the motion of thg, towards the minimum of without specifying a timescate.
It is then obvious that

o 0 o SF  §F
wp =Py — g =—— + —(+A — 1) 18
Vap = o — Pp 500 | 305 (18)
is independent of the Lagrange multiplier
The independence of (18) from the Lagrange multiplier indicates thattp&an be considered as generalized
coordinates. In fact, it can be calculated explicitly that any realization ofyhg}, ¥.s € R leads to a set o,
that is compatible with the constraint (2), though otlys € [0, 2] can be considered physically:

N 1 N [N 1 N N
Dda—l=2) (X vap+ 1 -1==D D Yup=0 (19)
a=1 a=1 \p=1 a=1p=1
because of the antisymmetry of tiigs.
Thus, theN — 1 dimensional subspace of thigs in the (’2") dimensional space can be left and thg can be
varied independently. Of course (12) is then no longer valid and an explicite rule for transformiggthe {v,s}
can no longer be given, as it would be (f§r> 2) a transformation into a higher dimensional space. The reverse
transformation{v,s} — {¢«} (13) must then be interpreted as a projection from(gmdimensional space of the
{Vap} into the N dimensional space of tHe, }. This projection, by its definition, conserves the constraint (2).
Treating they,g linearly independent and using the antisymmetry ofithg we have

3y,

82;:8 = 80()/8,38 - 80{88;8}/, (20)
8 8 ) 1 ) 8 1 8 8

=Zﬂ_=722ﬂ_=7(___>. (21)
8’#0{/3 y 8’#0{/3 8¢y N VR SWaﬁ 8¢y N \ ¢y 8¢ﬁ
e
The motiony,4 can be calculated as

o 3L 1 OF OF
w=—— == __+_(+x—,\)>. 22
P e N ( Sbo  S0p 2)

o (O] ~
Comparing (22) and (18) we find that the motifyy andy/,z scales by a factor/IV. This scaling can be understood
by two reasons. First

° 0 0
Vap = (% - @) d @3)
and

d
0 Ipaﬂ

©
W(xﬂ = (24)
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differ by a factor 2, as the definition range of values ofthg and¢, differs by a factor 2. FoN = 2 we have by
the definition (12)

Sy = 280 = —20¢p. (25)

For N > 2 we may put

2 N-1

o O]
i.e. the motions)r,z andv,4 scale, besides the factor 2 due to the difference in definition range, according to the
ratios of the dimensions of the spac(é’s) for {y.p} and(N — 1) for {¢,}, and we have

V/aﬁ' (27)

The consistency of this result can easily be checked by comparing the equations of motiop,obtitae physical
timescaler set alike for all interfaces

Teg = T. (28)
The standard treatment via the Lagrange formalism (4) then gives
; d
=——F+A, 29
ba 200 + (29)
N
1
= F, 30
=5 g (30)
9 N-139 1 9 1 9 3
Ty =——F + = E: F=—"—F+ = ——F=—TZX: ———)F (31)
90 7 99p N 0¢q Nz d9p Nz 0pa O

The same result is obtained from (18) using (13) or from (22) using (13) and (27):

. ° d d
v =Py = § = E =— E — | F. 32
T o) WO:/S waﬁ <a¢a 8¢ﬂ> ( )
Inthe general case, where the tlmescalgsjlffer for the different interfaces, we now can specify the total timescale

Zwaﬁ——z W-Z waﬁ (33)

N bz N fzg Wb pra
In the same way the energy scale can be fixed

= _ZLotﬁwaﬂ — Z C‘ﬂ I/fo(ﬂt (34)
N bz pra F

whereq, is the release or consumption of latent heat associated with the phase g¢hange
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For the special model of the free energy functional (9) and (10) we may evaluate explicitly

, € e
Vop = U:a? );01/ (‘%Vz% - Vay¢y) - );Uy (_%Vz‘py - Vﬁy¢y) : (35)

4. Interpretation of the interface fields ¥4g

The interface fieldg/,s are by their definition restricted to the finite interface regighsn 2.
At dual phase boundaries <> g only one interface field/.z is defined locally. At triple points <> g < y

three interface fields overlaf,g, Vo, , ¥4, , and at multiple points of ordev, (Q’) interface fields overlap.
The most remarkable feature of these fields is the fact that a varigign at a multiple point, where e.g.
0 < ¢y, da, g < 1, Only affects the phasgg andgg, butis influenced by, . ¢, itself, however, is notinfluenced
by 8vap. ¢, is only changed by, or g, . The sum over all possible variatiodig g, 5¥.y, 81, describes
the whole variational problem. The timescale and the energy scale of the individual phase transformations can now
be fixed in a unique way.
The release (or consumption) of latent hé¢atf a multiple point of orde®V is then given by

N N N . N N Lo
QZZQa:ZZLaﬁWaﬂ:ZZ aﬂwaﬁ’ (36)
a=1

T
a=1p>a a=1p>a of

where@aﬂ ingeneralis a nonlinear function of all present phases, antifhandr,g are the latent heat contributions
and relaxation rates of the individual phase changes.

This is the desired decomposition of the multiple phase interactions at triple points into dual contributions. On the
other hand, the static asymptotics of the multiphase theory is unchanged, i.e. the proof of stress balance at multiple
points as given in [2,3] is still valid.

The derivation of the generalized model is possible in two ways: either treating the interface fields as linear
transformations of the phase fields or treating them linearly independent in space of higher dir@éhsTtblmugh
both interpretations lead to the same result, we feel that the interpretatipggdieing linearly independent is
more general. Especially this interpretation removes the unaestatic feature of the linear scheme, that the equations
of motion depend on the order of the multiphase point (see Egs. (33) and (34)). This is achieved by rescaling the
time unit according to the ratios of the dimensions of the different spaces (27).

Additionally, the treatment is very general and not restricted to a certain free energy functional. We therefore
feel that this scheme can have a wider application in many body theories besides the application to the multiphase
change problem presented here.

In particular, the considered example indicates clearly that a relaxation ansatz in a field theory with multiple
interacting fields is warranted only for a set of functionally independent fields and the Lagrange formalism has to
be treated carefully with respect to the setting of time and energy scales.

5. Conclusion

A generalized field method for multiphase transformations is derived using interface fields. The interface fields
Yqp May either be treated as linear transformations of the phase digldisas linear independent fields defined in
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a(’z") dimensional space, in general being of higher dimension than the dimefisiot of the manifold of the
phase fieldg,,. In both cases, the interface fields are seen to be generalized coordinates of the variational problem.
Not using these generalized coordinates, but using the Lagrange formalism and treating the basic ggriables
independent is shown to mix time and energy scales.
The practical relevance of this model is that the time and energy scales of a multiphase change problem can be
attributed uniquely to individual dual phase changes, and the whole multiphase problem is decomposed into a sum
of dual phase changes.
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