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Abstract

A recent formulation of a multiphase-field model is presented. The approach is employed to numerically simulate phase
transitions in multiphase systems and to describe the evolution of the microstructure during solidification processes in alloy
systems. A new method for modelling solute diffusion in a binary alloy within N different phases with varying solubilities
and different diffusion coefficients is integrated in the multiphase-field model. The phase-field/diffusion model derived is
compared with the previous Wheeler, Boettinger and McFadden (WBM) model in a limiting case. The set of coupled evolution
equations, the phase-field model equations and the concentration field equation is solved using control volume techniques
on a uniform mesh. With the input of the specific phase diagram. thermophysical and materials data of the chosen real Fe-C
alloy system, the multiphase-field method is successfully applied to compute the peritectic solidification process of steel. The
numerical calculations of the peritectic reaction and transformation are presented. Copyright © 1998 Elsvier Science B.V.
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1. Introduction

The aim of the present paper is to lay out a mathematical method for modelling and numerically simulating phase
transitions in multiphase systems being controlled by solute diffusion. The entire model and the corresponding set
of reaction/diffusion equations are introduced in the following section. The model consists of a concept describing
the solute diffusion in the whole system and its integration into the recently developed multiphase-field approach
[1]. In the numerical example of Section 4, the growth process and growth rate of the crystals are limited by solute
diffusion rather than by the growth <inetics.
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In several technical alloys more than two species (multiple components) might appear in the multiphase system,
e.g. Al-Si~Cu, Ni-based superallcys, Y-Ba—Cu-0, etc. These even more general cases are not considered here, but
may be included in future work.

Up to now the approach presented is restricted to describe binary multiphase systems. It takes stoichiometric phases
as well as phases with varying solubility limits into account and allows the partition coefficients to depend on time
and space. In Section 3, we treat special limiting cases of the more general form of the solute diffusion equations
being discussed in Section 2. These limits enable a direct comparison with the Wheeler, Boettinger, McFadden
(WBM) model for solid-liquid paase changes [2]. As an application, numerical simulations of the solidification
process in the Fe~C system are presented in Section 4. The aim of these simulations is to reflect the peritectic
reaction, the peritectic transformation and to study the effect and influence of the local carbon concentration on the
growth behaviour and the resulting grain shapes. Conclusions are drawn in Section 5.

Phase-field models have become an attractive and useful tool for numerical and theoretical investigations of
phase transitions. First order phase transitions, such as solidification in a supercooled melt, can be described
well using the phase-field concept. The classical sharp interface theory leads to difficulties in the computational
treatment of the free boundary problem, since the position of the interface has to be calculated explicitly. In order
to handle the moving free boundary numerically, the phase-field method is used, where the interface is expressed
implicitly by a time and space dependent function indicating the phase state and being defined on the whole
region.

In the multiphase-field model [1], the different phases are expressed by the phase indicating functions, also
called phase-field variables ¢4 (x, 1), = 1,..., N. The thicknesses of the transition layers between two phases
are of the order nypg, where 14p are small positive parameters. The relation between the multiphase-field model
and a sharp interface model is shown mathematically by taking the interface thickness n44 as zero and using
matched asymptotic expansions [3,4,5]. A phase-field concept for the solidification of a pure material was studied
by Collins and Levine [6] and Caginalp [7]. Kobayashi [8] and Wheeler et al. [9] developed phase-field mod-
els with anisotropic surface tensions and showed that dendritic growth into an undercooled pure melt can be
simulated. Bosch et al. [10] introduced a numerical scheme of rotated and shifted lattice for solving the phase-
field equations of the model by Wheeler et al. [9]. With their method they were able to remove all unphysical
metastable states and to avoid any numerical anisotropy, which are both results of straight—forward discretization
algorithms. Kobayashi [11] further improved this formulation to calculate dendrites in a three-dimensional space.
Facetted crystal growth in a twc-phase system has also been treated using the phase-field theory [12]. More re-
cently, Gonzalez-Cinca et al. [13] presented phase-field simulations of facetted growing interfaces in a two-liquid
system and they showed that the simulations reproduce qualitatively a variety of morphologies observed in the
experiments.

Several phase-field models for the solidification of binary alloys have been derived with different intentions by
Wheeler et al. [2] and Caginalp and Xie [14]. Recently, the coupling of the phase-field approach with fluid flow was
introduced [15]. The traditional phase-field methods only distinguish between two different phases. Accordingly
they only treat phase transitions in two-phase systems, e.g. a system consisting of one liquid and one solid phase.
But in most alloy systems more than one phase emerges. Subsequently, Wheeler et al. [16] extended their work and
introduced an additional order pcrameter to model the solidification of a eutectic alloy. In order to describe the more
general case of phase transitions in an N-phase system, which naturally includes peritectic and eutectic systems,
Steinbach et al. [1] recently proposed a particular multiphase-field approach. This method allows the simulation of
growing microstructures in technically relevant alloys. Thermophysical data such as latent heat, interfacial energies,
diffusion coefficients and the phase diagram data are taken into account. The local stable and metastable equilibrium
temperatures between different phases that are dependent on the local solute concentration are calculated using a
commercial thermodynamic database.
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2. The model equations

2.1. The multiphase-field model

We consider a system of N phases and hence of N corresponding phase-field variables ¢y, ..., ¢y with 0 <
o < lfora=1,..., N, which are functions of time and space. The N phase contributions are connected under
the constraint:

B=N
Y ds=1 (1)
g=I

Using the approach of Steinbach et al. [1], the energy functional F for this system is expanded in a sum over pairwise
energy differences between two phases « and g.

B=Na=p

F@.vo) = [ 3 U5 @ Vo + f5 @)V @)
1% ﬂ I =1
where F depends on the vector @ = (¢, ..., ¢n) and its gradients V¢ = (V¢y, ..., Voy). The gradient and
potential energy density per pair of phases « and 8 are
grad 2
(@, V) = Seap(ba Vs — s V) . 3)
pot 1 2,2 1 3 2 1 3 2
Ja5 (@) = o= 0ub = map ( 30+ 20p — 303~ o ). @)

€qp is the gradient energy coefficient and 1/aqg is the proportional to the pairwise energy barrier height. The driving
force for the phase transition between “he phases « and g is defined by the deviation from the two phase equilibrium.
It depends on the local concentration and temperature and is described by mqg = mqg(c, T). The coefficients obey
the symmetry relations:

€4 = €8y.  Uop = dfy, Maf = —Mpgy. (5)

Formally the model allows (V) driving forces mqg for all pairs of phases to be specified. They must be derived from
the N free energy levels, e.g. F | B20 withg=1...., N and 8 # «, of the N pure and uniform systems, where
F*V is the free energy functlonal .7-' restricted to the local control volume cv:

map = (Fosy p=o ~ Famo.p=t)N ()

N is the appropriate normalization:

3
N:—/dv.
3

VCV

The driving forces correspond to the transitions between the individual energy levels of the different phases. The
situation is depicted in Fig. 1.

The energy levels .7-';"51 p=0 of the bulk phases depend on the local concentration and temperature. Their exact
specification is introduced in Section 4.
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Fig. 1. The schematic drawing outl.nes possible transitions between energy levels corresponding to different phases in the system.

The equations of motion for the N individual phases are derived by minimizing the free energy functional, Eq. 2,
with respect to the individual pkases in the system (for details see [1]):

al 1 d d
b3 (v ) U
5¢ Tap avVo ¢
= Z [eaﬁ (6 V05 — SV o) — ";""”’ (@8 — ba — 2ma,s)] (7
/3#1

Expression (7) holds for isotropic systems. It is straightforward to further extend the concept for anisotropic systems.
The specific feature of the set o7 differential Eq. (7) is its ability to describe multiple phase points in a system of N
phases, to take different physical properties of all N phases into account.

Numerical calculations have shown that in the general asymmetric case €58 7 €4, the force balance at a triple
junction, according to Young'’s law, is not reproduced. This is due to the fact that only pairwise interaction terms
in the derivation of Eq. 7 are considered. Thus we restrict ourselves to the symmetric situation €, = €4y as
the asymmetric case is of minor importance for the aims of this paper and for the applications below. Rigorous
analytical treatment of the multiphase model including higher order terms ( f grad - £POt depending on more than two
phases) shows that in the sharp interface limit the force balance is also achieved for the asymmetric case and will
be published elsewhere [5].

2.2. The solute diffusion equation for binary systems

The N phase-field variables of the system may be ordered in such a way that the first n phase-fields ¢1, ..., ¢
represent n phases with finite solubility limits and the next N — » phase-fields ¢, +1 ., ¢ describe all residual
stoichiometric phases in the system. The mixture concentration c(x, #) is defined by
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N
clx, 1) = Zq&ycy. (8)

y=1

where ¢, (x, t) is the concentration of one component in the phase y of the binary alloy depending on time and
space. Using the notation c ! for the concentration of the component in the stoichiometric phase £, the sum can
be split into two parts, one for the phases with varying solubility limits and one for the stoichiometric phases. The
expression above can be rewritten

clx, t) = Z¢aca+ Z (]5;[',;; — Z¢akaACA+ Z ¢s[ St )

B=n+1 B=n+1

Here we assume that the partition relation holds, since the first # phases are non-stoichiometric
Ca = k(cy(T), 5 (THca = kgaca, (10)

where ¢, is a reference concentration in phase A chosen arbitrarily, but with a non-vanishing phase contribution
¢4 > 0.The ky 4 are the partition coefficients being deduced from the specific equilibrium phase diagram, including
its metastable extensions.

Based on the ideas of the volume averaging method, we take the following general approach for modelling solute

diffusion in the system of N phases with different diffusion coefficients Dy, o = 1, ..., nor D;‘, B=n+1,....N,
respectively,
1\' 1‘\4,
cx,)=V1> ¢,D,Ve, ._V{Z%D V(ko,AcA)=+v > eiDgvey Y. (n
y=1 a=1 B=n+1

where ¢, D), V¢, is the diffusive flux of the concentration within the phase y with the local density ¢, . The approach
(11} is based on the physical statement that the mixture concentration ¢ in an infinitesimally small volume or in the
finite control volume of the numerical model can only change by external fluxes over the boundary of this volume.
These fluxes are superposed according to the local phase densities ¢,, which have to be evaluated on the boundary
of the volume.

Using Vc%‘ = 0 and substituting Eq. (9), the last expression becomes

! kea(c— Zg;n+l ¢;tc;;
cx, )=V D,V m
clx, t) {‘; b Dy ( Z(S:] bsksn

n kaAC n Zﬂ ] ¢§( st
=V ¢DV(—-~'~—-——~) -V ¢DVkA~—————~—-—- .
[; T\ X5 doksa 0; TN 5o dsksa
Assuming that the partition coefficients in general not only depend on time but also on space ky 4 = kga(x, 1), a
calculation gives the general form of the solute diffusion equation

. 3| $aDakan | ¢ i
cx,ty=Vyi=———"-'Vo— ——— ksAVs + ¢sVksa
.0 [ Y51 Psksa > 5—1 Psksa g

> PaDacVkoa }

+
> 51 Psksa
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n ")) N
-V a=]| Yoo ((f)“Vk A+k AV¢SL)CSI
D51 Psksa ﬁgﬂ L * BB
kon Zg:m ¢;tclsgn n
- ksAVes + ¢sVksa . (12)
Y 5o Psksa ;

3. Limiting cases and discussion of the derived model
3.1. Reduction to a solid/liquid interface model
Some applications of the diffusion equation derived above are now considered. In the following, the assumptions

resulting from the special multiphase system selected simplify the parabolic differential Eq. (12).
— Assuming a system of N phases and the absence of any pure stoichiometric phases, the equation reduces to

o1 Go Dk -
c'(x,t)—_—V[M—— Ve — = (Y ksa Vs + 65 Vks

Yo, doksa S dsksa \i
+ ZL\;] Ga Do Vkya (13)
Zﬁs\;l Psksa

— Restricting the system moreover to the presence of only two phases, we choose a solid—liquid interface and we
call the parameters ¢, Ds, ¢ and ¢y, Dy, ¢ for the solid and liquid phases, respectively. The partition relation is
¢y = kg ) where the partition coefficient kg still depends on space. Using the constraint ¢y + ¢ = 1 and having
the restriction that both solid znd liquid are phases with varying solubilities we get

¢x, 1) = Vi1 D1V + ¢ D Ves}
=V{¢ DV + ¢s DV (kgo)}

=v{00¥ (5% ) e (i) |
I Rt PN B SR P Y

—v{ 1—¢)Dv(——c——>+¢DV(—E———))}
=V TPV T e — ) T U =

A calculation gives

Dy(1 + ¢ (Ds/ Dpksi — 1)) [V clhs — 1) V¢.]

L+ gstka — 1) T T pulkg - 1)
Dy
e [m_au+mgm—m]hd

c(x, t):V{

6 Ga =1 T+ dothy — 1)

clhkg — 1) V(,bg] + N

. _ *|Ve - ————— T4 bk — 1
éx, 1) V{D [ ¢ 1+¢5(k51_1) l‘f-qbs(ksl_'l)

(Ds — D*)Vksl} ; (14)

where we defined

_ Dy(d + ¢s((Ds/ D)kg — 1))

D* -
14+ ¢sthky — 1)

(15)
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~ Assuming the partition coeffcient kg does not depend on space, the equation for the solid-liquid interface reduces
to

R _ * . _C(ks‘l -1
clx, t)_V{D |:VC 1+¢—s(kgf—1)v¢s]}' (16)

since Vkg vanishes. At this stage, we introduce a rewritten expression for ¢(x, r) which will be referred to in
Section 3.2 where we compare our model with the WBM concept

¢x, 1) = V{D*[Ve — (cks) — c)V 5]} = V(D [Ve + () — ¢5) Vi), (17)
where we used
¢ =@+ csPs = P + ¢skacl.

— Finally, an equation for the rate of change of the concentration in the liquid with time ¢, still working in a
solid/liquid system, is derived even considering the partition coefficient to depend on time kg = ky(x, 1). Using
the implication ¢, = —¢ of constraint (1) and the partition relation ¢s = kgc) we can write

¢(x, 1) = gy + a1y + Esds + Pscs
= (1 — ¢s) — ads + kscips + ksicigs + ksicids. (18)

Applying approach (11) we get

a(l —¢s) — Cld’s + kle1¢s + kg é1os + kslclé)s
= V{g1 D1V + ¢s D1V + ¢s Dskg Ve }
= V{(D| + ¢s (kg Ds — D1))Vey + ¢s Dsc1 Vg }

Dy
:V{Dl(l+¢S (FkSl -- 1)) VC1+¢SDSCIVk§l}- 1%
1

From rearranging, it follows that

1 D,
=V ID |1+ kg — 1)} Ve + ¢ Ds) Vi
“ 1+ ¢ps(kg — 1) [ I( ¢S(Dl sl )) o+ ¢sDscy 51}

1 ‘ ‘
T+ ¢kg— 1 s — K 5 ) »
+ 1 4+ ¢s(kg — 1) ((I = ksDcargs — k1) o0

— If kg does not depend on ¢ and x we get

R — D(1+¢ (DSA l))VC}+(l k)c<¢3] (21)

Cl = s | ——Ks] — — Kg| )C1Ps |«

1 1+ dslkg — 1) | s D, sl 1 sl S
— The multiphase-field equation in the liquid/solid case reduces to the standard form by inserting ¢ = 1 — ¢s:

. 1 1

T = €V2¢S + ;(bs(l — @) (E - ¢s> +mag(1 — ¢s). (22)

3.2. Coupling of the multiphase-field with the solute diffusion equations

The coupling of the multiphase-field with the solute diffusion equations has to be considered in two ways. The
coupling direction ¢ — ¢ thereby arises naturally from Eq. (12). For each configuration ¢y (x, 1), the mixture
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Fig. 2. Local linearization of a schematic eutectic phase diagram.

concentration c(x, t) has a distiact equilibrium solution. The transient solutions depend on the time dependent
distribution of the ¢, (x, #) implicitly. There is no explicit source term of the form x ¢ with an appropriate coupling
constant x. Such a source arises if the mixture concentration field Eq. (12) is split into an equation for ¢} or ¢,
respectively, Eq. (21). The source term

1

N N
X = T gt — D

(1 — ka)esos (23)
in Eq. (21) for the liquid concentration corresponds to a sink term ¥ ¢ in the congruent equation for the solid
concentration.

The reverse direction of coupling ¢ — ¢ is described by Eq. (6). For the solutal solid/liquid system, we have to
specify the free energy difference 7Y — 7V depending on the local mixture concentration and on the local order
parameter ¢;. While this can be done in general using a thermodynamical approach, a pragmatic way is to use the
local linearization of the metastable phase diagram, Fig. 2.

For an order parameter ¢ and a mixture concentration ¢ the local equilibrium temperature 7*(c, ¢) is in linear
approximation given by

T, @) =T*(c) =T* ( > =T% 4+ m(c — o). (24)

C
1 - ¢s - ksl¢s

where T° and ¢” are the tempearature and concentration at the intersection of the linearized solidus and liquidus
lines corresponding to the local mixture concentration ¢ and the temperature 7, Fig. 2. The free energy difference
is then defined in the standard way by the latent heat L and the undercooling

F = FN = AT - T7), (25)

where AS{Y is the entropy of fusion.
3.3. Comparison with the Wheeler, Boettinger and McFadden model

In the isothermal case and neglecting surface anisotropy, the model equations for the phase-field variable and for
the concentration field of Wheeler {2] are given by
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d¢s _ 292, _ O
o M {6 Vi, a¢s]
= M {2V — cWg[gs(¢s — D(ds — 1 — Br(T))]
— (1 = Walds(s — D(gs — § — Ba(TH]} (26)
J 0 RT
a_i =M,V [c(l —c)va—ii = MpV {—U—Vc+c(| - o)V(fp — fA)], (27)

where the notation convention is taken from the original paper of Wheeler et al. [2] with ¢ = ¢. Eq. (27) may be
reformulated to

dc MY RTV _ 1 ] v
5 =M {vm ¢+ cf —C)[a(ps(fs—f,a)] ¢s}
RT - .
=M,V {U—VC-I-M(C.(ﬁS)V(PS}, (28)
where
- b
M(c, ¢s) =c(l —¢) [a—d)s(fg -- fA):| . (29)

This equation has the same structure as Eq. 17 of our presented model. Using thermodynamical arguments, see
e.g. [17), M can be set into proportionality with the difference between ¢ and ¢;. This difference is used in our
formulation as a given quantity from the specific phase diagram, while it is incorporated into the model by Wheeler
etal. .

The phase-field equation (26) can be rewritten to

%—M{62V2¢>—[W + (1 =)W — (s — 1
=M s — [cWpg Walgs(ps — 1) (s — 3)

+ ¢s(ds — DIcWgBp + (1 — c)WaBal)
= M (€2V2¢ps — W (s) + g(gs)(c — ™)), (30)

where we introduced the derivative of the potential

W (¢s) = [cWg + (1 — ) Walps(ds — Di(gs — 3). €2
the coupling function
W
899 = 9u(8 — D(Wapp = Wapy) and ¢ = A—ﬁ:vgﬂg

as a measure of the mean interface concentration. In a specific phase diagram ¢* describes the mid (equalG) line
between solidus and liquidus concentration.

The most striking difference with respect to our formulation in Eq. (22) is the definition of the driving force. In
the WBM-formulation, it is proporticnal to (¢ — ¢*) which is a strongly varying function over the phase boundary.
Eq. (26) can be rearranged to

ad S 2 ’ e * (&
% = M{e2V2¢ — W (§s) + g(9)(c™ = c*(T)) + g(@s)(c — D), (32)

where we introduced the “equilibrium” distribution ¢® (that is in general unknown) in such a way that (c —c¢*(T')) is
splitinto one part proportional to (c—c®1) vanishing in equilibrium and into another part proportional to (¢* —c*(T')).
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Since ¢*(T) is a function of the temperature and only weakly varying in space, while ¢ and ¢® strongly vary over
the phase boundary, (¢® — ¢*(T')) does not vanish in equilibrium. Thus, it contributes to the equilibrium solution
and influences the interface thickness and the Gibbs~Thomson relation. Therefore to our present understanding
the correspondence of the phase-ield parameters € and W' to the physical parameters n and o has in general a
contribution that depends on the solution of ¢ and ¢.

To conclude, we find the model presented and the WBM-model to be equivalent in special limiting cases. Whilst
the importance of the WBM-model lies in the thermodynamic consistent derivation, the model presented can easily
be motivated and is more flexible regarding the identification of the model parameters to specific phase diagrams.

4. Application to peritectic solidification processes in the Fe—C system

Investigating the solidification of steel Fe-C in binary approximation, the solid phases are non-stoichiometric. It
is well known that the solid state diffusion of carbon in steel cannot be neglected. It plays an important role during
the peritectic transformation due to the high diffusivity of carbon. The fundamental mechanisms of the peritectic
transition in Fe—C are reproduced well by coupling the diffusion equation for the mixture concentration with the
phase-field equations [18].

The influence of carbon diffusion on the peritectic transformation is studied in first simulations in one spatial
dimension, Fig. 3.

We assumed a planar solidification front situated in an isolated melt as the initial condition. Starting from the
melting temperature, the whole system is continuously cooled down with a cooling rate of 0.5 K/s. The propagation
of the different phasefields during the cooling process is shown at five different temperatures. The diffuse interface
regions between any pair of phases are marked with black lines. The first three temperature steps at 1781, 1776
and 1766 K consider the growth process of the properitectic §-ferrite phase. The curves in the first diagram reflect
the distribution of carbon at these temperatures. The melt has an initial carbon concentration of 0.3 wt% and the
8-ferrite phase is in equilibrium at a concentration of 0.0577 wt%. The carbon concentration in the melt rapidly
increases during the growth of §-ferrite due to the lower solubility of the §-ferrite phase. The amount of carbon in
the ferrite at the phase boundary to the liquid always tends to adjust the equilibrium melt carbon concentration.

The last two temperature steps 1764 and 1759 K illustrate the peritectic transformation. Below the peritectic
temperature, the peritectic y -austenite phase nucleates on the properitectic §-ferrite phase. y -austenite grows under
simultaneous dissolution of §-ferrite and of the liquid. The peritectic transformation is controlled by the solid
diffusion of carbon through the y-austenite. The appropriate concentration profile is drawn in the second diagram
and the expected concentration gradient in the austenite phase can be seen well. This gradient causes continuous
carbon transport through the austenite layer so that the peritectic transformation takes place without immediate
contact between the ferrite and the melt.

Two-dimensional numerical calculations were carried out as the next aim. In addition to thermodynamical and
kinetic forces, the model also considers the effect of curvature. The parameters for the simulations are ¢y =
03wt%, T = 0.5K/s, D = 3 x 1075cm?/s, Ds = 6 x 10~%cm?/s, D, = 107%cm?/s. Since no specific
values for the austenite/ferrite interfacial energies are known, we chose 0,5 = 07, = o5 = 2.04 x 107*J/cm?.
Thermodynamical parameters are taken from the metastable phase diagram of Fe~C depicted in Fig. 4. A gridof 150 %
150 cells with a spacing of 2 m and a time step of At = 5 x 107 s are used and periodical boundary conditions are
applied. The simulations took about two days CPU time on a single processor of a silicon graphics power challenge.

The numerical calculation, Fig. 5, presents the evolution of the carbon concentration field. Below the peritectic
temperature, single austenite nuclei are set arbitrarily onto the four ferrite/liquid interfaces. In general, this could
be done if critical nucleation -indercooling is exceeded locally. This critical nucleation undercooling could be a
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Fig. 3. The one-dimensional growth of the properitectic 8-ferrite phase and the subsequent peritectic transformation is simulated using
the coupled phase-field/diffusion model. Thae appropriate concentration profiles are shown at different temperatures.

fixed value or could obey some statistical distribution. In both cases a new nucleus will, in a certain surrounding,
reduce the undercooling and thereby limit the effective grain density [19]. The distances of the ferrite/austenite
particles are chosen of the order of typical secondary dendrite arm spacings. Now the temperature of the whole
system is decreased continuously by a constant cooling rate 7. Although the carbon distribution in the liquid is
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Fig. 4. Fe-C phase diagram including metastable extensions.

nearly homogeneous, the four ferrite/austenite grains interact and influence each other due to the far-reaching
concentration fields. At the triplepoints, the three phases ferrite/austenite and liquid coexist and react in direct
contact in a peritectic reaction. The peritectic austenite phase grows around the primary properitectic ferrite phase
by a simultaneous consumption of both the ferrite and the liquid. As the austenite isolates the ferrite from the liquid
and the ferrite is completely enclosed by the austenite, the austenite/liquid interface becomes separated from the
austenite/ferrite interface. In order to calculate the driving force for the austenite/ferrite transition, the equilibrium
conditions are taken from the metastable phase diagram, Fig. 4.

Below the peritectic temperature range, the ferrite is not a stable phase. As the carbon content of the austenite at
the interface to the liquid is higher than the carbon content at the metastable interface to the ferrite, a concentration
gradient is established in the austenite layer. This gradient causes solid state diffusion of carbon from the liquid to
the ferrite and enables the further growth of the austenite. The so-called peritectic transformation continues by the
carbon diffusion through the solid austenite phase.

5. Conclusion

A phase-field method for solutal driven phase transitions in binary multiphase systems was established. The solute
diffusion model is based on the superposition of individual fluxes of species in different phases. The concentrations
of the species are assumed to be connected by equilibrium partitions at phase boundaries and triplejunctions. In
general, the model allows more than three phases to be present in the whole system. According to Gibb’s phase
rule, only the situation of triplejunctions can exist locally. The driving forces for the phase change ¢, are defined
by the deviation of the local concentrations within the different phases from the metastable phase diagram.

The applications to peritectic solidification of Fe-C under realistic conditions and to a eutectic alloy [20] demon-
strate the general applicability or the model. Further work will be addressed to the extension of the model presented
to consider multicomponent systems.
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Fig. 5. Simulation of the peritectic solidification in Fe—C. The mixture carbon concentration is illustrated by the grey-scale. The peritectic
y-austenite phase nucleated on the primary properitectic é-ferrite grows around it by simultaneous consumption of both the ferrite and

the liquid phase.
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