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AbstractÐA novel mesoscopic modeling technique has been developed to simulate the unsteady growth of
multiple equiaxed dendritic grains into a supercooled melt of a pure substance. In the model, the numerical
calculation of the temperature ®eld in the supercooled melt between the grains is coupled with a stagnant-
®lm model for dendrite tip growth, such that without resolving individual dendrite arms the evolution of
the grain envelope and the internal solid fraction can be predicted. The simulations are in good agreement
with experiments for the growth of a single dendritic grain of the model substance succinonitrile. The
model is then applied to simulate the growth of various con®gurations of up to 14 strongly interacting
grains. The results indicate that the use of local analytical solutions in numerical calculations is a viable
technique for simulating large-scale dendritic growth phenomena. # 1999 Acta Metallurgica Inc. Published
by Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

Dendrites are the most common growth mor-

phology in solidi®cation of metals, alloys, and other

substances [1]. Dendritic growth is characterized by

the propagation of a primary tip and the nonlinear

evolution of secondary and tertiary side-branches

on a microscopic scale (from 10ÿ6 to 10ÿ5 m).

Equiaxed grains result if the growth is from free

nuclei into a supercooled melt. An assemblage of

many equiaxed dendritic grains constitutes a so-

called mushy zone on a macroscopic scale (10ÿ1 m).

Modeling of equiaxed dendritic solidi®cation on the

scale of a typical mushy zone thus requires the sim-

ultaneous consideration of growth and transport

phenomena over length scales ranging over roughly

®ve orders of magnitude. The mesoscopic scale is

de®ned here as being between the microscopic and

macroscopic length scales, and is of the order of

from 10ÿ4 to 10ÿ3 m. A mesoscopic unit cell inside

a mush would typically contain of the order of 10

equiaxed grains and literally thousands of dendrite

arms and tips. Such unit cells or representative el-

ementary volumes (REVs) form the basic building

blocks of macroscopic or volume-averaged solidi®-

cation models used in the simulation of casting

processes [2]. Accurate modeling of the dendritic

growth processes inside a mesoscopic unit cell is not

only important for the prediction of the ®nal grain

structure of a solidi®ed material, but also for feed-

ing local information (e.g. latent heat evolution,

solute rejection) back to the macroscopic model.

The development of a model for simulating the
growth of an assemblage of equiaxed dendritic

grains on a mesoscopic scale is the objective of the
present study. Of primary interest are prediction of

the evolution of the grain shapes, the growth inter-
actions between multiple grains, and the nature of

the thermal ®eld in the melt between the dendrites.
For example, for strongly overlapping thermal ®elds
in front of the dendrite tips of neighboring grains,

the tip velocities can be expected to be reduced, up
to a point where a globulitic (or spheroidal) grain

structure results. On the other hand, for weak inter-
actions the tip velocities will be similar to those for

dendrite growth into an in®nite melt [3].
The direct numerical simulation of dendritic

growth inside a mesoscopic unit cell cannot be
achieved with presently available computational
power, because the range of length scales that need

to be resolved is too large. A recent example illus-
trating the present limits of direct numerical micro-

structure simulation is the fully resolved, three-
dimensional calculation of dendritic growth by

Karma and Rappel [4] using the phase-®eld
method. Their results are limited to a relatively
small equiaxed grain, without a full side-branch

structure, and relatively high dimensionless super-
coolings. The extension to fully dendritic grains

growing at the low supercoolings typical of casting
processes would require an increase in compu-

tational power by at least three orders of magnitude
in both speed and memory. On the other end of the
spectrum, relatively simple approximate and one-

dimensional unit cell models of equiaxed dendritic
solidi®cation have been proposed [2, 5] that are

Acta mater. Vol. 47, No. 3, pp. 971±982, 1999
# 1999 Acta Metallurgica Inc.

Published by Elsevier Science Ltd. All rights reserved
Printed in Great Britain

1359-6454/99 $19.00+0.00PII: S1359-6454(98)00380-2

{To whom all correspondence should be addressed.

971



primarily intended for the prediction of the latent

heat evolution during recalescence. Obviously, these
models are unable to resolve the actual shape of the
growing grains and the internal structure of the

mush. One bridge over the gap between direct
microscopic simulation and the one-dimensional
unit cell models is the so-called cellular automaton

modeling of grain growth by Gandin and
Rappaz [6]. In this method, the orientation and

evolution of the shape of the growing grains is
tracked numerically, allowing for a prediction of
the ®nal grain structure in a solidi®ed part.

However, in a manner similar to the one-dimen-
sional unit cell models, the dendrite growth vel-
ocities are calculated based on some local mean

supercooling, and the temperature (or concen-
tration) ®eld between the grains is not resolved.

Consequently, the cellular automaton model does
not allow for a detailed study of the local growth
interactions.

The modeling of equiaxed dendritic solidi®cation
on a mesoscopic scale in the present study is facili-

tated by a novel approach that combines a numeri-
cal solution of the relevant transport equation (i.e.
the heat di�usion equation) on the mesoscopic scale

with a local analytical solution of the dendrite tip
growth problem at the smallest length scale [7].
With this method, the computational power

requirements are reduced by at least three orders of
magnitude compared to direct microstructure simu-

lation on a microscopic scale. In general, the use of
a local analytical solution or empirical relation in a
numerical simulation rests on the notion that the

system behavior at the smallest length scale is ``uni-
versal'' and independent of the longer range inter-
actions. Such an approach is commonly utilized in

the modeling of turbulent ¯uid ¯ow, where the
e�ect of the smallest eddies on the mean ¯ow is rep-

resented by relatively simple relations that are valid
for a large variety of ¯ows. One of the earliest
examples is the mixing-length theory [8], which is

based on the assumption that the ®nest-scale turbu-
lence structure is similar everywhere throughout the
¯ow ®eld. Another example is the use of the ``uni-

versal'' law-of-the-wall in modeling various turbu-
lent wall shear ¯ows [8]. The law-of-the-wall is

applied in a thin ``inner'' layer along the surface of
a body, corresponding to a few grid points in a nu-
merical simulation, and matched with the mean vel-

ocity ®eld in the ``outer'' region away from the
wall, which is obtained from a solution of the rel-
evant transport equations on the system scale. The

key point is that the same law-of-the-wall can be
used for large variations in the outer ¯ow.

Similarly, in the present model, the same analytical
relation is employed for all (active) dendrite tips to
describe the growth behavior on the smallest length

scale, and this relation is then matched with the
outer temperature ®eld. The use of this fundamental
concept in modeling dendritic solidi®cation has not

been attempted before, but seems to be a plausible
idea given the large separation of length scales in a

dendritic mush. While the present study focuses on
the development of the basic model for equiaxed
dendritic solidi®cation of a pure substance, an

extension to alloys and other growth structures will
be straightforward.
The model and the numerical solution procedures

are described in the Sections 2 and 3. Then Sections
4 and 5 provide results for a single equiaxed grain
and a comparison of the predictions with available

experimental data. Then, in Section 6, numerical
results are presented for the growth of various con-
®gurations of up to 14 interacting grains, which is
followed by the conclusions in Section 7.

2. MODEL AND GOVERNING EQUATIONS

A schematic illustration of the various length

scales present in equiaxed dendritic growth is
shown in Fig. 1(a). The smallest, microscopic length
scale is denoted by d1, and is of the order of the

dendrite tip radii (from 10ÿ6 to 10ÿ5 m). The den-
drite tips grow into the supercooled melt surround-
ing the grain. The di�usion boundary layers around
the tips have a thickness of the same order as the

tip radii. The prediction of the tip growth speeds
and radii requires the resolution of the thermal ®eld
on the scale d1, something we accomplish in the

present model using a local analytical solution (see
below). The mesoscopic scale d2 is of the order of

Fig. 1. Schematic illustration of equiaxed dendritic growth:
(a) unit cell, where d1 is the microscopic scale and d2 is the
mesoscopic scale; (b) grain envelope and stagnant ®lm.
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the spacing between the grains, which is typically

two orders of magnitude greater than d1. The pre-

diction of the overall shape of a grain and the

growth interactions between the grains inside the

unit cell requires the resolution of the thermal ®eld

on the scale d2, which is done here by solving nu-

merically the transient, three-dimensional heat

equation in the supercooled melt.

Central to the coupling of the microscopic and

mesoscopic transport processes in the present model

is the de®nition of a grain envelope, in a manner

similar to previous models [2, 5, 6]. As shown in

Fig. 1(b), the grain envelope is a smooth surface

connecting the tips of all ``active'' or ``surviving''

dendrite branches, where a branch is judged as

active when it is longer than the next active branch

closer to the primary tip. Therefore, the growth vel-

ocities of the grain envelope can be obtained from

dendrite tip speeds, as described below. Note that

the volume inside the grain envelope contains ®nely

``dispersed'' solid and melt. The temperature of the

solid/liquid mixture inside this very form-®tting

envelope can safely be assumed to be at the melting

point, Tm. Consequently, all growth takes place at

the envelope surface and the latent heat is con-

ducted into the supercooled melt between the

grains.

The local analytical solution used to resolve the

temperature ®eld on the microscopic scale d1 is the

so-called ``stagnant-®lm'' modi®cation by Cantor

and Vogel [9] of the well-known Ivantsov solution

of the heat ¯ow problem around a growing, iso-

thermal paraboloid of revolution representing a

dendrite tip. When coupled with a selection

criterion [2], this solution provides both the den-

drite tip speed, v, and radius, R, as a function of

the supercooling DT. The regular Ivantsov solution

cannot be used because it is only valid when the

melt is in®nite in extent. In the stagnant-®lm sol-

ution, the supercooling is instead applied at a con-

focal isothermal paraboloid located a ®nite

distance df away from the dendrite tip and moving

with the same speed as the tip. The stagnant-®lm

solution is given by [9]

DT � L

c
Pe exp�Pe�

� E1�Pe� ÿ E1 Pe 1� 2
df
R

� �� �� �
�1�

where DT is the supercooling across the stagnant

®lm of thickness df, Pe = vR/(2a) is the tip Peclet

number, a is the thermal di�usivity, L is the latent

heat, c is the speci®c heat, and E1 is the exponen-

tial integral function. The selection criterion

needed in addition to equation (1) to obtain a

unique value of the tip speed can be written as [2]

R2v � 2aG

s*L=c
�2�

where G is the Gibbs±Thomson coe�cient and s*

is a selection constant. Combining equations (1)
and (2) to provide an explicit relation of the form

v = f(DT) can be accomplished by numerical inver-
sion and curve ®tting. It is important to realize

that this local analytical solution is only used on

the microscopic scale, d1. Hence, the ®lm thick-
ness, df, is chosen to be of the same order of mag-

nitude as, but greater than the tip radius R. For
df>>R, equation (1) would reduce to the Ivantsov

solution.

For a given supercooling across the ®lm, the
above local analytical solution can be used to calcu-

late the speeds of every active (primary and second-
ary) dendrite tip. Because the exact locations of the

dendrite side-branches are not known and the grain
envelope is a continuous surface, the tip speeds are

calculated for every point on the envelope. For this

purpose, the same ®lm thickness df is chosen for all
tips. Then, as shown in Fig. 1(b), a confocal grain

envelope can be de®ned that is located the distance
df away from the regular grain envelope. As

opposed to the regular grain envelope, the tempera-
ture of the confocal envelope, Tce, is not uniform,

because the tip speeds or, equivalently, the super-

coolings across the ®lm, DT = TmÿTce, are di�erent
for every active dendrite tip. The distribution of Tce

is obtained from the numerical solution of the heat
equation on the mesoscopic scale, as explained

below. Note that the choice of a uniform df leading
to the de®nition of the confocal grain envelope is

simply a matter of convenience in the numerical al-

gorithm, and one could have chosen a variable df
corresponding to an isothermal confocal envelope.

For later use, the tip speeds are converted to nor-
mal envelope velocities, vn, using the following re-

lation

vn � vn � cosy �3�
where n is the exterior normal to the envelope and

y is the angle between the normal and the growth
axis of the closest dendrite arm. The calculation of

the normal is described in the next section. The
angle is obtained by specifying the crystallographic

orientation of the grain and assuming cubic aniso-
tropy.

The temperature distribution on the mesoscopic

scale, d2, is obtained by solving numerically the fol-
lowing transient, three-dimensional heat di�usion

equation in the supercooled melt between the grain
envelopes in the unit cell:

@T

@ t
� ar2T �4�

The boundary conditions are the ®xed melting tem-

perature, Tm, at (and inside) the moving grain

envelope and an adiabatic unit cell. Initially, the
melt is taken to be at a uniform temperature T1
corresponding to an initial supercooling of
DTi=TmÿT1.
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As mentioned above, the numerical solution of

the heat equation provides the confocal grain envel-
ope temperature distribution, which can formally be
written as

Tce � Tjconfocal envelope �5�
Furthermore, the knowledge of the temperature
gradient at the envelope from the numerical sol-

ution allows for the calculation of the fraction of
solid, fs, formed at the envelope using the following

energy balance:

ÿ a
@T

@n

����
envelope

� r
L

c

����vn��fs �6�

Because the envelope continually propagates in an

outward direction and the temperature gradient var-
ies with both time and location on the envelope, the

solution of equation (6) will establish a certain solid
fraction distribution within the grain.
The overall structure of the mesoscopic model as

stated above is summarized in Fig. 2, which shows
a schematic of the temperature pro®le normal to a

grain envelope. The local analytical solution is used
to resolve the temperature pro®le in the stagnant
®lm for the calculation of the dendrite tip/grain

envelope velocity, while the numerical solution of
the heat equation provides the temperature distri-
bution on the mesoscopic scale outside of the grain

envelope and also the confocal envelope tempera-
ture. The two solutions are matched both at the

regular and the confocal grain envelope. The nu-
merical solution should only be viewed as an ap-
proximation in the ®lm region, because it does not

resolve the microscopic temperature ®eld around in-
dividual dendrite tips. Proper matching of the ana-

lytical and numerical solutions depends primarily
on the choice of the ®lm thickness, df. If the ®lm
thickness is too small, the steep microscopic tem-

perature gradients near the dendrite tips are not

well approximated by the numerical solution on the
mesoscopic scale. If, on the other hand, the ®lm

thickness is too large, the local analytical solution
can become invalid due to thermal ®elds from
neighboring dendrite branches and other grains

penetrating into the ®lm. Nonetheless, the relatively
large separation of the length scales d1 and d2
enables one to ®nd a ®lm thickness that works for a

reasonably wide range of supercoolings, which is
demonstrated below.

3. NUMERICAL SOLUTION PROCEDURES

The numerical method used to solve the model

equations consists of two parts: the envelope propa-
gation algorithm and the solution of the heat di�u-
sion equation. The coupling of both establishes the

solution of the mesoscopic model.
Equations (1)±(3) provide the normal grain envel-

ope velocity, vn, as a function of the supercooling

across the ®lm. In order to propagate the envelope
across the regular and ®xed numerical grid, we use
a phase-®eld-like algorithm [10]. A ®eld variable, f,
is introduced that varies across the ®lm from 1 in

the grain near the envelope to 0 in the supercooled
melt away from the confocal envelope. It should be
emphasized that this ®eld variable is simply used as

an indicator function for purely numerical reasons,
and has no physical meaning. The grain envelope is
assigned a value of f = 0.95, while the confocal

envelope is placed at f = 0.5. The transition region
for f, de®ned as the distance df over which f var-
ies from 0.05 to 0.95, is chosen to be twice the ®lm
thickness df. The ®eld variable f allows for the cal-

culation of the normal to the envelope according to

n � ÿ rfjrfj �7�

Fig. 2. One-dimensional temperature distribution normal to a grain envelope illustrating the matching
of the numerical solution and the local analytical solution at the stagnant ®lm.
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The propagation of f is given by

_f � 36

df
f2�1ÿ f�2��vn�DT ���� stab�f� �8�

where the dot above f denotes the time derivative
and stab(f) is a stabilization operator. This oper-

ator acts as an anti-di�usion ¯ux to keep the f-pro-
®le compact and is given by

stab�f� � C
d2f
72

n � rjrfj ÿ f�1ÿ f� 1

2
ÿ f

� �" #
�9�

whereC is a stabilization constant. Taking C10.1/Dt
results in magnitudes of the anti-di�usion ¯uxes
that work for any time increment Dt. The f-pro®le
is compact when stab(f) = 0, which leads to
the following stable pro®le of f in the normal direc-
tion n

f�n� � 1

2
1ÿ tanh

3n

d

� �
�10�

Again, the basic structure of the above equations is

essentially borrowed from the phase-®eld
method [10] and found to work well as a propa-
gation algorithm for the grain envelope. The formu-

lation ensures that the envelope is a smooth surface
and is propagated at the correct velocity regardless
of the orientation of the f-surfaces (i.e. the grain)

with respect to the grid. Equation (8) is solved
using standard ®nite di�erences. The grid is uniform
and chosen such that at least two grid points lie

within the ®lm of thickness df.
The heat di�usion equation, equation (4), is

solved using a standard control volume discretiza-
tion technique. The temperatures of all cells inside

the grain envelope, i.e. all cells with fr0.95, are
set to the melting temperature, Tm. The confocal
envelope temperatures, Tce, are obtained from the

calculated temperature ®eld by interpolation to
f = 0.5. Finally, equation (6) is discretized and
solved at each time step to update the solid fraction

distribution in the grains.

4. RESULTS FOR A SINGLE GRAIN

Before validating the mesoscopic model using ex-

perimental data and studying the growth inter-
actions of multiple grains inside a unit cell, it is
useful to examine the predictions from the model

for the limiting case of a single grain growing into
an essentially in®nite melt (i.e. uniform far-®eld
supercooling). This discussion is intended to clarify

the coupling between the local analytical solution
and the numerical solution of the heat equation,
and shed light on the proper choice of the ®lm

thickness df. All thermophysical properties are
taken to be those of the commonly used metal-
model material succinonitrile (SCN), mainly
because experimental data are available for this ma-

terial and the selection constant, s*, is reasonably

well known [11±13].

As a ®rst test, the mesoscopic model is used to

predict the tip velocity of a single dendrite arm. In

this limiting case, the Ivantsov theory, coupled with

the selection criterion, provides an analytical predic-

tion of the tip speed. A comparison between the

theoretical prediction and the calculations is shown

in Fig. 3(a). The open squares correspond to meso-
scopic model calculations with a ®lm thickness of

200 mm and a grid spacing of 100 mm. It can be

seen that the model results are in reasonable agree-

ment with the theory for supercoolings ranging

from 0.2 to 1.0 K. It is important to note that the

tip radius varies signi®cantlyÐfrom 112 mm (at

Fig. 3. Predicted results for a single dendrite (SCN) grow-
ing into a uniform supercooling: (a) comparison of pre-
dicted dendrite tip speeds for various supercoolings with
the Ivantsov theory; q show the results for a ®lm thick-
ness of 200 mm and a grid spacing of 100 mm; the error
bars correspond to variation in the grid spacing from
100 mm to 50 mm (w) and to variation in the ®lm thickness
from 200 mm to 400 mm (q); (b) partitioning of the total
supercooling between the stagnant ®lm and the melt out-
side the confocal envelope as a function of the dendrite

tip speed.
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0.2 K) to 15 mm (at 1.0 K)Ðin this supercooling

range. Nonetheless, the ®lm thickness of 200 mm
gives good results over the entire range. The agree-

ment somewhat deteriorates above 0.8 K, which can

be attributed to the ®lm thickness becoming too

large relative to the tip radius. As mentioned ear-

lier, the ®lm thickness should generally be of the

same order of magnitude as, but larger than the tip

radius, for the use of the local analytical solution to

be meaningful. A series of calculations was per-

formed in order to investigate in more detail the

sensitivity of the results to the numerical grid

Fig. 4. Predicted envelope shape for a single equiaxed grain growing into a uniform supercooling: (a)
octahedric shape that results when the heat di�usion equation is not solved and all dendrite tips grow
at the same velocity; (b) and (c) two views of a fully coupled prediction; (d) cut through a primary

branch of the grain depicted in (b) and (c).
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spacing and the ®lm thickness. The error bars in

Fig. 3(a) were obtained by varying the grid spacing
by a factor of two, i.e. from 100 mm to 50 mm, while

keeping the ®lm thickness constant at 200 mm and
by varying the ®lm thickness by a factor of two, i.e.

from 200 mm to 400 mm, while keeping the grid spa-
cing constant at 100 mm. The resulting tip speeds

vary up to 225%. Note that a ®lm thickness of
400 mm in one variation is more than 25 times

greater than the tip radius at 1.0 K. Such a large
ratio is, of course, not recommended.

The partitioning of the total supercooling is
further illustrated in Fig. 3(b) for the same con-

ditions as in Fig. 3(a). A ®lm thickness of 200 mm
implies that up to a distance of 200 mm from the

dendrite tip, the temperature ®eld is resolved by the
local analytical solution, while beyond 200 mm it is

resolved by the numerical solution of the heat
equation. It can be seen from Fig. 3(b) that for the
present ®lm thickness of 200 mm, the portion of the

total supercooling contained within the ®lm
increases with tip speed. For example, for a tip

speed of 85 mm/s about 70% of the total supercool-
ing of 0.8 K is contained within the ®lm, while the

remainder is outside the confocal envelope where it

is resolved by the numerical solution. For a total

supercooling of 0.2 K, the portion contained within

the ®lm is less than 20%. Despite these variations

in the partitioning of the supercooling, the tip vel-

ocities are predicted well, as discussed above.

While the above comparison establishes the mini-

mum ®lm thickness needed to predict the correct tip

speeds, it does not address the ability of the meso-

scopic model to predict the thermal interactions

between adjacent dendrite branches and produce a

realistic grain envelope shape. The establishment of

the grain envelope shape is illustrated in Fig. 4. The

calculations are started with a spherical grain envel-

ope that has a radius approximately equal to the

®lm thickness. Figure 4(a) shows the octahedral

envelope that is predicted by the envelope propa-

gation algorithm when the same tip speed (50 mm/s)

is used everywhere. In other words, the octahedral

shape results when the envelope propagation algor-

ithm is decoupled from the numerical solution of

the heat equation and the confocal envelope tem-

perature (0.4 K here) is uniform around the grain.

Fig. 5. Superimposed SCN dendrite images taken at four di�erent times during the IDGE microgravity
experiment of Glicksman and coworkers [11±13] ¯own on the USMP-2 mission (DT = 0.370 K); the

time interval between the images is 83.25 s.
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It can be seen that the algorithm produces the

expected shape.

The corresponding solution, where the full meso-

scopic model is solved and the envelope propa-
gation algorithm is coupled to the numerical

solution of the heat equation, is shown in Fig. 4(b)±

(d). Due to reduced heat ¯uxes at the faces of the

octahedron, compared to the corners, the tempera-

tures of the confocal grain envelope there are closer

to the melting temperature, resulting in lower super-

coolings and growth speeds at the faces.

Conversely, the heat ¯uxes from the corners are

greater, resulting in lower confocal envelope tem-

peratures and higher tip speeds. Consequently, a
realistic looking equiaxed grain envelope evolves

that has six primary branches at right angles.

Figure 4(d) shows a cut through one of the primary

branches. Due to di�erent heat ¯uxes at the edges

and sides and, hence, di�erent speeds of the second-

ary and tertiary dendrite arm tips, a realistic look-

ing cross-sectional shape evolves. A detailed

experimental validation of the predicted envelope
shape is provided in the Section 5.

5. EXPERIMENTAL VALIDATION FOR A SINGLE
GRAIN

The mesoscopic model is validated for a single
equiaxed dendritic grain by comparing predicted
grain envelope shapes and solid fractions to

measurements from an experiment involving di�u-
sion-controlled growth of a pure substance in a uni-
formly supercooled melt. The experiment is the
Isothermal Dendritic Growth Experiment (IDGE)

of Glicksman and coworkers [11±13], launched on
the space shuttle by NASA in March 1994 as part
of the United States Microgravity Payload (USMP-

2). The IDGE uses pure SCN which is contained
inside a temperature-controlled growth chamber.
After melting the SCN and establishing the desired

supercooling level, the growth of a dendrite is in-
itiated on a stinger by activating a thermoelectric

Fig. 6. Dendrite arm A reconstructed from the superimposed images in Fig. 5 and rotated to lie in a
side-branch plane; the interrupted lines are the parabolas ®tted to the tip.
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cooler. During growth, photographs are taken at

regular time intervals along two perpendicular opti-

cal paths. The image analysis techniques used to

extract the desired data from the photographs are

described in detail in Ref. [14].

Figure 5 shows four superimposed images taken

at di�erent times during one of the experimental

runs. The orientation of the dendrite is determined

and the solid/liquid interface is tracked by marking

it with a su�cient number of points. Then, the

coordinates of the points are transformed by ro-

tation and translation, such that the side-branch

plane of interest is placed in the X±Z plane of refer-

ence and the symmetry axis of the dendrite arm is

oriented along the Z-axis. An example is shown in

Fig. 6. The envelope shape is obtained by measur-

ing the distance, Xtip, of the active secondary side-

branch tips from the primary axis as a function of

the distance, Z, from the primary tip. Again, a

branch is judged active when it is longer than the

next active branch closer to the primary tip.

Figure 7 shows measured active secondary tip

positions obtained from experimental runs at four

di�erent supercoolings (DT = 0.287 K, 0.370 K,

0.470 K, and 0.609 K). By normalizing the lengths

by the primary dendrite tip radius, R, all data

obtained at various times during growth and the

four supercooling levels collapse along a single line,
indicating self-similar growth behavior for the

envelope shape. Ignoring the data in the primary

tip region (Z/R< 10), the branch tip positions and,

hence, the envelope shape are correlated by

Xtip

R
� 0:668

�
Z

R

�0:859

�11�

This experimental correlation is valid in the self-

similar regime given by 1<<Z/R<<1/Pe, where Pe is

the tip Peclet number as de®ned above [14].

Fig. 7. Experimental scaling relation between the normalized envelope width X/R and the normalized
distance away from the primary tip, Z/R; the symbols represent all data obtained at di�erent times for
both sides of a dendrite at four di�erent supercooling levels (DT= 0.287, 0.370, 0.470 and 0.609 K);

only the squares were used in ®tting the scaling relation.
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The image analysis procedures used to measure

the solid volume of the dendrites from the IDGE
photographs are also explained in Ref. [14]. The

solid volumes are converted to mean solid fractions
for an entire equiaxed grain by multiplying the

volume of a primary branch by six and dividing it
by the volume of a certain grain envelope. In order

to avoid any ambiguities related to the envelope
shape, the mean solid fraction, �fs, is de®ned here

for a spherical envelope having a radius equal to
the primary arm length Z. The resulting experimen-
tal correlation is given by [14]

�fs � 3:86

�
Z

R

�ÿ0:90
�12�

which again is only valid in the self-similar regime
1<<Z/R<<1/Pe. For Z/R>1/Pe, the mean solid

fraction approaches the dimensionless supercooling
DT/(L/c). Note that the axial coordinate Z/R can

also be interpreted as a dimensionless time t = t�v/R
= Z/R, where t is the time.

The above two experimental correlations are now
used to validate the mesoscopic model predictions.

Figure 8 compares the envelope shapes for a pri-
mary branch predicted for three supercoolings

(symbols) to the experimental correlation given by
equation (10) (line). The agreement is reasonably

good, keeping in mind that the envelope shape in
the simulations is not prescribed but is a result of

the coupling of the microscopic growth model to
the mesoscopic temperature ®eld around the envel-

ope. In the simulations, the dendrite arms were
grown to the same length (in dimensional coordi-

nates) for all supercoolings. Then, the scaling of the
lengths with the tip radius in Fig. 8 results in the

predicted envelopes appearing shorter with decreas-
ing supercooling. It can be seen from Fig. 8 that
the mesoscopic model somewhat overpredicts the

envelope width for the highest supercooling. This
disagreement is of the same origin as the slight

overprediction of the tip velocity for the higher

supercoolings in Fig. 3(a) and (b): the stagnant-®lm

thickness (of 200 mm) is becoming too large relative

to the tip radius. Figure 8 also shows that the envel-

ope width for the lower supercoolings is underpre-

dicted in the dendrite root region, away from the

tip. In the root region, the local supercooling in

front of the secondary dendrite tips is very small

(below 0.1 K) resulting in the ®lm thickness becom-

ing too small relative to the tip radii. In summary,

the above comparison indicates that it is generally

important to ensure that everywhere on the envel-

ope the ®lm thickness is of the same order of mag-

nitude as, but larger than, the tip radii. However,

reasonably accurate results can be obtained with

the same ®lm thickness for a range of growth con-

ditions.

Figure 9 shows that reasonable agreement also

exists between the measured and predicted mean

solid fraction evolution, further validating the

mesoscopic model. The solid fraction predictions

for the lower two supercoolings are somewhat

Fig. 8. Comparison of the predicted envelope shape with
the experimental scaling relation, equation (10), for three

di�erent supercoolings.

Fig. 9. Comparison of predicted mean solid fractions in a
spherical envelope for di�erent supercoolings (symbols)

with the experimental scaling relation, equation (11).

Fig. 10. Predicted evolution of the temperature distri-
bution between two dendrite branches approaching each

other (DTi=0.48S K, SCN).
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lower than the experimental correlation, which can

be explained by limitations associated with the nu-
merical grid used. In the calculations, the grain
evolves from a spherical seed that must have a
minimum radius of about two grid spacings (i.e.

200 mm). This seed size is too large compared to the
grain sizes expected in the self-similar regime.
Either a ®ner grid or an improved seeding pro-

cedure will be implemented in the near future.

6. RESULTS FOR MULTIPLE GRAINS

In this section, we present several examples of
simulations involving multiple equiaxed grains. As
a ®rst step, the growth of two interacting grains is
examined. The initial supercooling is 0.48 K and the

center-to-center distance between the grains is
10 mm. Figure 10 plots the temperature distribution
at di�erent times between the tips of two grains

with aligned growth directions (i.e. the tips grow
directly toward each other). Until 40 s, the tips
grow uncoupled. Thereafter, the temperature ®elds

signi®cantly overlap. Figure 11 plots the evolution
of the tip speed for the aligned case as well as for a
case, where the second grain was rotated by 458
with respect to the ®rst grain. Due to the inter-

actions, the speed reduces to zero at about 100 s. In
the case where the second grain is rotated such that
the reference tip points into the region between pri-

mary branches, the ®nal growth stage is slightly
prolonged.
Another simulation is performed with four

grains, located at the corners of a tetrahedron. The
nuclei are oriented randomly at a distance of about
4 mm from each other. Figure 12 shows dendrite

envelopes for the four grains at two di�erent times.
The outpointing branches are much more elongated
than the branches pointing into the center of the
box, because the outpointing branches have more

favorable conditions to grow. The inward pointing
branches grow more slowly because of thermal in-

teractions between the grains.
Finally the growth of 14 grains is simulated for

two di�erent seeding con®gurations. The results for
the grain envelopes are shown in Fig. 13. The

ordered con®guration shows an overall faster
growth than the random con®guration due to better

®lling of the space in the ordered case. While the
above results for multiple grains need to be ana-

lyzed in more detail and also require experimental
validation, they illustrate the capabilities of the pre-

sent model. The number of numerical grid points
used in these calculations is 120�120�120, and
the grid size is dx = dy= dz = 100 mm. The

Fig. 11. Predicted evolution of the tip speeds for a den-
drite branch approaching another grain; results are shown
for the aligned case corresponding to Fig. 10 for the ®rst
100 s (®lled symbols) and another case where the reference
grain is rotated by 458 (open symbols) (DTi=0.48 K,

SCN).

Fig. 12. Predicted envelope shapes of four equiaxed den-
dritic grains centered at the corners of a tetrahedron
(equal distances of about 4 mm) at 30 s and 100 s after

seeding (DTi=0.48 K, SCN).
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calculations require of the order of 4.5 CPU hours
on a 100 MFlops workstation.

7. CONCLUSIONS

The growth of multiple equiaxed dendrites of a

pure substance growing in a supercooled melt is
modeled using a novel mesoscopic simulation tech-
nique. The model couples the solution of the heat

di�usion equation in the supercooled melt around
the equiaxed grain envelopes with a local analytical
solution (i.e. the stagnant-®lm model) for calculat-

ing the dendrite tip speeds. It allows for the predic-

tion of the evolution of the grain envelope shape
and the internal solid fraction. The model is suc-

cessfully validated for the case of a single grain
through a comparison of the predictions with exper-
imental measurements from the IDGE.

Several simulation results for the growth of mul-
tiple grains are presented in order to illustrate the
model capabilities. They reveal the transient vari-

ations in the growth speeds and the development of
asymmetric grain shapes due to thermal interactions
between the grains. Future work will include a

more detailed analysis and experimental veri®cation
of these and other results. We envision that the
basic modeling concept presented here can be
extended to simulate columnar dendritic growth,

grain structure transitions, solutal transport, and
even growth in the presence of melt ¯ow.
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