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Abstract

The phase field theory describing the evolution of a dual phase boundary is extended to multiphase problems: Each phase is
identified with an individual phase field and the transformation between all pairs of phases is treated with its own characteristics.
The governing differential equations for the evolution of the multiphase system are derived by minimizing the free energy
functional. This free energy functional is expanded in a series over the pair energies between the different phases, where the
local fluctuations of one phase are treated with respect to its counter-phase. The proposed generalized multiphase concept

reproduces the dual phase system as a limiting case.

The relevance of the model for metallic systems is discussed with respect to eutectic and peritectic solidification and grain

growth.

0. Introduction

The phase field method [1,2,4-7] has achieved a
considerable interest in the recent years. Based on the
Ginzburg-Landau theory of phase transitions, it shows
a wide range of applications — especially in materials
sciences — by now ranging from dendritic growth into
an undercooled liquid [3,4], over facetted growth [5]
to structural solid—solid phase transitions [7].

The basis of the theory is the functional of the
local free energy density depending on the order
parameter of the system and its spatial derivatives.
The order parameter may be a scalar function like
the fraction of solid f; in solid-liquid phase change
problems, that varies from O in the liquid to | in the
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solid, or a vector function for anisotropic surfaces
[8]. In general, however, a small volume of matter
has different possible ordered states, like the properi-
tectic and the peritectic state in the peritectic phase
transformations. The peritectic and the properitec-
tic phase cannot coexist, therefore only one of them
can achieve a volume fraction of 1 within a small
volume, if this volume is not intersected by a phase
boundary.

Some order parameters, on the other hand, can co-
exist. One example is the structural order parameter
and the order parameter of solutal demixing, that both
describe the formation of coherent precipitations in
metals {7].

In this paper we restrict ourselves to that type of
order parameters p;, which describe the local phase
state of a system exclusively.
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In a system with n possible phase states, the (})
interactions between these phases are described by a
sum over the pairwise intercorrelations of the different
order parameters.

Section | gives the formal definition of multiphase
order parameters and the free energy functional. In
Section 2, the equations of motion of the individual
phases are derived by minimizing the free energy func-
tional. Section 3 gives numerical results for some sim-
ple triple point problems. Finally the relevance of the
theory for metallic systems is discussed.

1. The multiphase free energy density

According to the standard definition, an order pa-
rameter p in phase change problems represents a prop-
erty of the system that is non-zero in a distinct region
of the phase space and 0 otherwise.

In solid-liquid phase change problems, the order
parameter p is casually identified with the fraction
solid of a small volume of the material. It may also
be identified with the angular intensity change of a
Laue diffraction function showing a typical pattern for
each solid system. These patterns vanish in the liquid
state. Different metallic phases are to be identified by
different patterns.

The order parameter, according to this definition, is
not a characteristic of a single state, but the distinction
between two different states. Within a system exhibit-
ing three different phase states, for example «, 8, and
liquid phases of a peritectic system, the « pattern van-
ishes at the transition to liquid and it changes to the
B pattern at the transition to the 8 phase. Thereby we
might interpret 8 phase and liquid as “non « phase
states”. We then define the set of phase fields p; by the
local fraction of a metallic phase i, that is non-zero if
the diffraction pattern of the small volume reveals the
pattern typical of phase / and 0 otherwise. If no pat-
tern at all can be identified, the phase state is liquid,
which is included as individual phase state in the set
of phase fields p;.

For n phases we get the constraint

Y =1 (1

i=1

We then allow the phase fields p; to vary between 0
and 1,

O0<pi =1, 2)

as known from the standard phase field model.

We adapt here the interpretation given by Oxtoby
[9], that the “smear out” of the order parameter cor-
responds physically to the decrease of the structural
order in a solid-liquid interface on an atomic scale.
Only within these interface regions more than one of
the order parameters is greater than 0.

Let us now set up the free energy functional F of
the system in its dependence on the local phase field
variables p; and their spatial derivatives V p;,

We expand the local free energy density

f="+2 0+ Y fa
i ik (i#k)
+ Y fute @)

ikd (kD)

f 0 contains the part of the free energy, that is inde-
pendent of the phase state; f;l contains the energy dif-
ferences of bulk phase i; fli is the energy part that
is sensitive on the boundary between phases i and k;
fii, would contain the triple point energies and so on.

In the following we assume that the triple point en-
ergies and energies of higher order are negligible. This
corresponds to the physical assumption that the triple
point between three different phases adjusts accord-
ing to the movement of the dual phase boundaries and
possesses no, or negligible, dynamics of its own.

The potential part of the local free energy f can be
written as a direct extension of the standard double
well function:

1

gpot _ L | 2 2
fik = dan [P, Py

— mik (%p? + PPk — 30h — pfpi) } (5)

where m;; is the linear coefficient of deviation from
thermodynamic equilibrium. In general, the contribu-
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tions (m,-k/12a,-k)p? or (mik/IZaik)p,':’ respectively in
(5) are part of the bulk free energy. Their difference
accounts for the difference of the bulk energies fipm
and fkpm for small deviations from thermodynamic
equilibrium.

The pair potential contributions (mik/4aik)(P,-2Pk —
p,%p,-) and (1/4a,<k)pl.2p,% in (5), contributing only at
the interface, define the potential barrier between
both phases in order to prevent a spontaneous phase
transition. The given expression (5) combines both
contributions in an analytical expression (Fig. 1).
Other formulations that show the same properties to
the lowest order p; p;y would be possible.

The kinetic term ﬁ‘,‘(i“(p,-, e Vpi, Vpr) is ex-
panded in a series over powers of p;. px, Vp; and
V px. Considering aspects of symmetry and theory of
irreducible representation [10] the kinetic term obeys
to lower order power series in p; and Vp;:

FE i, o Vpi, Vpu) = el peVpi — pi Vil
(6)

where & is referred to as the gradient energy coeffi-
cient of the phases i and k.

Eq. (6) can be interpreted as follows: The gradient
of one order parameter V p; measures the interface
energy to all the rest of the possible order parameters
or phases. The contribution of one specific interface
type pi — pk. therefore, is weighted by the density
of these states. Vp; has no contribution to the phase
transformation p; — p, if p; = 0 in the local volume,
i.e. if no phase p; is present. The operator pyVp; —
p: V py fulfils this requirement to the lowest order p;
and Vp,'.

It is easy to see that in the case of a dual phase
system,

pi=1-p  p=0 foralll #k1#i, (7)

the multiphase kinetic functional reduces to the stan-
dard phase field function [3].

Summarizing, we postulate the following form for
the free energy functional:

n

n
= Z (fili'“(l?iqpk.VP;'Vpk)+ﬁi°‘(pnpk))
ik (i<k)

n 2

&7 1

=) (ITk|PkVPi - PVl + Yo I:Pizpiz
ik (i<k) ik

1 1
— Mk (EP,} + P,‘ZPk - 51’2 - P/%Pi)]) (8)

where the “thermophysical” data &;; and a;; are to be
defined for each type of interface individually.

This functional is a direct extension of the dual
phase field functional. It is sensitive on triple- or
multiple-phase points, where one individual phase is
in contact with different counter-phases. This will be
demonstrated in Sections 2 and 3.

2. The equations of motion for the phase fields

As stated in Section 1, the phase fields p; cannot
be identified with order parameters as used in conven-
tional phase change problems. At the triple point of
the phases (p;, px. p1), the change of p; can be af-
fected by the phase changes i — k and i —  simul-
taneously. In general, we have to sum up all possible
phase change contributions for the change of the phase
field p;:

pi= ) ik )

k (k#i)

where the g;; are the sources (respectively sinks) for
the phase field p;, that correspond to the particular
phase transformation between phases i and k.

These g, now may be derived by the minimization
of the local free energy of the system

d B A
g =1 V— — —— ke
Tikqik ( Vo 8p,-> Jik (10)
pi = constant, for ! # i k.

It must be noted that the p; and Vp,; do not span
an independent set of variables of the system. This is
illustrated in Fig. 2. Due to the smear out of the phase
field variables p;, at the triple point all three phase
fields have non-zero values, while at the dual phase
lines only two phase fields interact.
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Fig. 1. Double well potential as used in standard phase field computations (a). Extending to more than two phase states leads to
higher dimensional functions of the potential (b), (¢). Note each of the binary subsystems reproduces a standard double well potential.
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Fig. 1. {continued).
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Fig. 2. Triple point between three different phases pi, p2. p3.
Due to the smear out of the phase field variables non-zero values
of all three phase fields are observed simultaneously only at
the triple point.

Using the constraint (1) we find

n

P _ - px

v LFE (1)
ap; k (kikj) 0P

where the functional dependences opy/dp; are un-
known in general. These contributions, however, are

dependent on the coexistence of at least three phases
i, j, k and therefore constitute contributions of the or-
der of the triple point energies. Neglecting these con-
tributions as before we find

Wiy i (12)
ap;j

and accordingly

Ml:—l. i#j, 1=1273 (13)
3 (3, pj )
for derivatives in all spatial directions x;.

Inserting the definition of the pair engergy f ®
into (10) and using (12) and (13) we derive (see Ap-
pendix A)

Tikqik = 8,'2k(l7kvzpi — piVipe)

1
— —pipk[px — pi — 2miu(AT)], (14)
2a;y



140 1. Steinbach et al./Physica D 94 (1996) 135-147

where m;y is the local driving force, dependent on the
mobility of the interface and the thermal local under-
cooling AT} of the interface with respect to the local
equilibrium conditions between the phases i and k.
Constitutional deviations from equilibrium might also
be considered in this context.

The complete set of equations using (14) and (9)
reads:

n 1

pi= Z ‘_-Izgz?_k(pkvzpi — piVipe)
& (ki) ik

_ Pibk

2aix

(pr — pi — 2mik(ATik))]- (15)

This system of n partial differential equations, the n-
phase field equations, can be reduced to a system of
(n — 1) independent partial differential equations by
inserting relation (1). The numerical solution of this
set of differential equations on the first look seems to
require a substantial computational effort. In a specific
computation, it will depend on the local phase state,
which of the equations (15) has to be solved. A closer
look upon the phase field equation (15) reveals that the
time derivative p;{x, r) vanishes aside from interface
regions with

pix.t) - pp(x,t) >0,

pVipi £0  piVip #0.

Thus in a simulation of a growing microstructure the
solution of the phase field equation for each phase i is
required only in its interface region. This simple ob-
servation reduces drastically the computational effort
for the solution of the phase field equations.

In Section 3, the physical significance of the pa-
rameters ik, &k, a;jx and m;; is briefly reviewed and
some numerical examples are given.

(16)

3. Numerical examples

The set of differential equations (15) is solved using
a standard Finite Difference algorithm on a rectangular
grid. The physical meaning of the coefficients of the
equation t, &, a, m, is treated elsewhere in detail for
the dual phase model [5].

In the multiphase model, these relations must be
fulfilled for each pair parameters Tk, €k, @ik, Mik S€P-
arately, since the dual phase model must be repro-
duced as a limiting case. It must be noted that only
a complete set of parameters ik, ik, dik, M defines
the characteristics of a specific dual boundary and that
the differences between two boundaries i < k,i <>/
are in general not given by the difference of only a
single parameter like &; respectively ;; for example.

The parameters Tk, €k, dik. m;x may be related to
the measurable quantities p;x—mobility, o;;—surface
energy and A;x—thickness of the interface by the well-
known relations [e.g. 1]:

LixAi

T = ik )
Tikthik

Efk = hikOik, (18)
Aik

- ‘ 19

aix 72008 (19)
6aixLix(Tu — T

— a’k_”‘(_u. (20)

Tix

where T is defined as equilibrium temperature for
phase change i — k (e.g. melting temperature 7y
in solidification problems). L is defined as the heat
released during phase change i — k (e.g. heat of
fusion in solidification problems). m;y is defined as
the driving force for phase change i — & depending
on deviation from equilibrium. Note that m;; = —my;
is antisymmetric due to the fact that the release of heat

+ L;y during the phase change i — k is equivalent to

the consumption of heat —L;; = Ly; during the phase

change k& — i. The same argument accounts for the
mobility wuix = —pi. The remaining coefficients are
positive and symmetric.

In the following we will present some of our nu-
merical results for single- and multiphase systems:

— Single phase isotropic systems have mainly been in-
vestigated to check the performance of the software,
but there might also be some interest in such sys-
tems with respect to e.g. condensation and growth
of liquid droplets in gaseous atmospheres (e.g. in
combustion phenomena).
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Fig. 3. Evolution of objects of a single isotropically growing
phase (e.g. droplets of a liquid growing from a gas-phase). The
mutwal interaction between the individual droplets leads to the
formation of 120 angles at the triple point as to be expected.

Fig. 3 shows the result of a computer simula-
tion of the growth of an array of droplets in a
homogeneous undercooled ambient. As initial con-
dition we have introduced four spherical nuclei that
were arrayed in a hexagonal lattice with periodic
boundary conditions in the two dimensions in order
to avoid the effects evoked by the influence of the
boundary conditions on the growth and ripening of
the droplets. The droplets collide at the same time
with each other and the 120° angles at the triple

points that naturally appear after the collision stay
exactly at this value on a longer time-scale.

In the case of multiphase systems, triple points
between the individual phases may occur, e.g. at
the solid-liquid—gas triple point. The different in-
terfacial energies o;; between solid and liquid (oy)),
solid and vapour (o) and liquid and vapour (ay,) in
this case vary significantly as known from wetting
experiments being most important for welding and
brazing technology. Taking o;x # o, leads to triple
points with angles between the individual phases
differing from 120° following the well-known rela-
tion for the angles at a triple junction in a situation
of local mechanical equilibrium [ 1]:

sin «;;
‘) — constant. 2hH

0ijj
For the given surface energy ratio of e.g.

a2 _9 _gs. (22)

013 023

k=

the angle o) in equilibrium has to be equal to «rj2 =
2 arccos (%k) = 151°.

Fig. 4 shows the grain boundary of the same sim-
ulation as before, but 6122/6123 = 0.5. We found an
asymptotic approach to o> = 1357, but the posi-
tion does not reach the predicted equilibrium an-
gle at the triple junction. The position versus time
is shown in Fig. 4(c). We suppose that the angle
has locally already reached its equilibrium value al-
though the corresponding phase boundaries are still
curved due to the fact that the entire interface has to
adjust.

Solids in general reveal crystallographic struc-
tures. The different crystallographic orientations
are related to an anisotropic behaviour, which still
has residual symmetries. Describing phase tran-
sitions from an isotropic liquid to an anisotropic
solid accordingly requires the implementation of
anisotropy into the phase field equations. This can
be done either by taking the kinetic factor t;; or
the diffusivity of the phase field &;x dependent
on the phase boundary orientation relative to the
crystallographic orientations of the neighbouring
grains/phases (Tix = Tk (8. Ok): €ix = €ix(6;, 6k)).
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Fig. 4. The difference in interfacial tension between two differ-
ent phases results in deviation from the 120° symmetry of the
triple point (a). The simulation reveals a relaxation of the triple
point coordinate (b). The asymptotic value, however. does not
correspond to the equilibrium value predicted from analytical
considerations (c). Reasons for this behaviour are discussed in
the text.

We confine ourselves to formulate the anisotropy
of the system by taking an anisotropic relaxation

grain boundary

Fig. 5. Definition of the angles 6;, 8; being used to describe
anisotropic growth of solids. The angle 6; corresponds to the
angle between the normal of the phase boundary determined
by Vp; and the crystallographic orientation given by the €;
vectors.

rate Tix:
Tik = Tix (65, 6r). (23)

where 6;, 6; are related to the crystallographic ori-
entations of the phases i and k, see Fig. 5. In case
of solid-liquid boundaries the value ;% only de-
pends on the crystallographic orientation of the solid
phase i. 1;x = 1ix(6;). Depending on the choice of
these functional relationships the description of dif-
fuse, metallic growth corresponding to a small de-
gree of anisotropy is as well possible as modelling
of facetted growth [5].

The multiphase concept in this context can be
used to treat different grains of a single phase ex-
hibiting various orientations in space. For this pur-
pose all orientations are divided into ten orientation
classes (Pott’s model) and each class is identified
with one order parameter.

Fig. 6(a) shows the competitive growth of 100
initial nuclei in two dimensions. In Fig. 6(b) a
three-dimensional computer simulation of 36 grains
with different crystallographic orientation can be
seen. Both simulations reveal the grain selection-
behaviour of directionally solidified material.
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(b)

Fig. 6. Competitive growth of anisotropically growing, facetted
crystals into an isothermal undercooled melt. The given ex-
ample shows grain selection phenomena being calculated for
solidifying silicon in two (a) and three (b) dimensions.

— Coupling the phase field equations to both thermal
and solutal fields allows modelling of microstruc-
ture formation in real multiphase alloys such as eu-
tectic (e.g. Fe-C, Al-Si), monotectic (e.g. Al-Pb)
and peritectic systems (e.g. TiAl, YBaCuO [12]).

Fig. 7 shows a computer simulation of three dif-
ferent time steps of a growth/dissolution process of
a peritectic system. The growth of the facetted peri-
tectic phase p is coupled to the dissolution of the
properitectic phase.

In the liquid phase the properitectic particles
dissolve corresponding to their particle diameter

(surface curvature). Hence, the local concentration
¢(x, T) in the liquid arises around the dissolving
particles.

It can be observed that the microstructure of the
growing material is not planar, but exhibits bridges
between the solidifying interface and the properi-
tectic particles as has been proposed and experi-
mentally observed [13].

4. Conclusions and outlook

A phase field model has been proposed allowing the
treatment of several thermodynamic phases in global
non-equilibrium, where on a local scale pairwise in-
teractions between two phases near thermodynamic
equilibrium are considered.

Superposition of these pairwise interactions issues
the characteristics of triple point (multiphase equilib-
ria) situations. The solution of the multiphase field
equation thereby reveals the kinetics of phase transi-
tions, that is related to the limited diffusion of solute
or energy respectively.

The applications of this concept reach from multi-
grain systems to eutectic or peritectic transformations
in solidification problems. Extensions to other phase
transformation problems are possible.

The equilibrium conditions of the interface can be
taken from existing thermodynamic data bases. Look-
ing at the variety of existing phase diagrams for metal-
lic alloys or ceramics reveals the potential applications
of our method for the prediction of microstructure evo-
lution. Besides implementing existing thermodynamic
data, however, many physical properties, especially
those of interfacial energies, have to be determined or
at least to be estimated.

Our future work will focus on streamlining of the
software code in order to calculate microstructures
with some hundreds of different objects corresponding
to differently oriented grains of various phases. The al-
gorithms will be tested and verified using transparent
organic analogues allowing for a quantitative check of
the phase evolution dynamics during solidification.

Simultaneously, qualitative studies especially on
peritectically growing, technologically important
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ts

Fig. 7. Computer simulation of three different time steps of a growth/dissolution process of a peritectic system. The growth of
the facetted peritectic phase p is coupled to the dissolution of the properitectic phase. The lower figures show the corresponding
concentration field with sinks and sources: where light grey describes high, dark grey low concentration of solute in liquid. Black

areas denote solid phases.

systems, e.g. Ti-Al or the Y-Ba—Cu-O high Tc su-
perconducting system will be performed and other
possible application areas will be identified.
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Appendix A
The aim of this appendix is the derivation of the

phase field equation (15) from the free energy density
(8). 1.e.
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F{pi.....pn.Vpr..... V)
/f prx.n). ... Pulx, 1)
Vpix.n..... Vpu(x. 1)) dV. (A.D)
f=FMp@n..... pnlx. 1),
V[?](x. f) ..... VPn(x.[))
+ f""‘(m(x ..., palx.1)).
f-kin — Z kml (AZ)
ik (I<k)
n
fpot — Z fA,'F/)\vm~ (A.3)
ik (i<k)
fam = Le2 \pV i — iVl (A4)
A 1
pot _ 2.2
ﬂk = ml’i P
3
mix | P; Py
- -~ -~ —pipi]. (A5
4a,-k<3+pm pm) (A.5)

The derivation of phase field equations requires the
minimization of the free energy F, given in Eq. (A.1).

The phase change rate g;; for the phase change of
p;j — pi is given by the variational derivative of the
free energy functional F:

SF 3 Y\ »
—— = (V- —— ) f. (A.6)
8p; IVp;  dp;

Tikgjk =
where we use the notation

‘;
A7
de, Z: ,-d(d\ Pi) (A7)

Inserting (A.1) in (A.6) yields

Z [ kin | #pot ] _

r.y (r<s)

B
sk ( avpj dl’r>

(A.8)

Neglecting contributions of the order of triple point
energy to the phase change rate of phases j and k,
only terms with indices j and k are considered. This
way, the sum reduces to

d d
g =1V _ kin Fpot A.
TikGjk ( v apj) If + fix l (A.9)

= 3V (fklﬂ) a;)pj (}iiot)

2 (787) = 50 (72

ap;
=(a) + (b) — (¢c) — (d)

(A.10)

The different contributions are treated separately:
Contribution (b) obviously vanishes due to the fact
that fﬁm does not depend on V p;.
In the following we deal with term (a). For this
purpose we define

. ap;
d, pj = d—x’ (A.11)
t
and
b d
3 pj = d:” (A.12)

Using Eq. (A 4) yields:

(a) =

£5, )
[PeV pj — piV pil

2
“jk
avp_, 2

2
Eik 2
> 21 ox {d(d\ ) [PV pj — p;iVpil

(A.13)
The term in braces may be written as
4 ,
33 ) |[7k pj = ;¥ pi|
3 dx, P O e\ |2
= 5o | gxz Pi | =i g-\'z P/f
P wPkS (A4

(Prdx, pj — pjoy, Pk)2

3 [
30, pj)

+ (Prdx, pj — Pja.\'gpk)2+(l’k8x;p_/ - pja.r3Pk)2:|

(A.15)
- a—'l k
= 2(pi0y; pj — PjOx, Pk) (Pk —Ppj 8\ b )
x; Pj
= 2(p0x; pj — Pjox; Pk)(px + pj)  (by Eq.(13)).
(A.16)
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The term (px + p;) is a finite constant between 0
and 1 and — considering no third phase coexisting — it
takes the value 1.

These calculations lead to

23
&% 3
_ _Jk 7 .
@==22 2Pk ps = pide o))

i=1

(]

=% 2 {620 (@) + i (5 1)

i=1

(axtp])( x,pk) —Dj (B%Pk)l
= kaPkaf,-Pj
i=1

= piVipi).

— pjd; px

=5 (pk V2 pj (A17)

Next it is shown that contribution (c) vanishes. For
this purpose we write:

€ =7— i (A.18)
Pj
6‘2 N
|kap piVpil” (A.19)
8pj J J
3
= jk(Pkij - PjVPk)a—pj(PkVPj —piVpr)
(A.20)
3Pk
= fk(pkvpj —piVpi) <<a—) Vpj - Vm) .
Pj
(A21)
Use of Eq. (12) yields
© =& (PeVp; = piVP(=Vpj — Vp). (A22)

Under the assumption that only the phases j and k are
present at j-k boundary, i.e. Vp; = —V py, the term
(¢) is equal to zero.

Finally we treat contribution (d) and consider
Eq. (12):

(d) pol
PJ

Mk p13'+ 2 Pi 2 (A23)
day \ 3 PPk T il '

1 apk
= = 1an 2pjpk +2pj Pk—— — Mjk P, +2p;jpk
Ajk

ap;
ap 9P« 3pk>}
2 2
+p — Pi— — PE = 2P P
i ap; ap; ¢ T ap;
(A.24)
1
=—12p;pr(px — pj) — dmjipj pi} (A.25)
4ajy
= o —p - T (A26)
= zajk PjPk\Pk — Pj 4k PjPk- .
Inserting these results in Eq. (A.10) we get
Tjkqjk = 8fk(ka2Pj —piVp)
: ( )+ ik
— 5 PjPk\Pk — Dj —— Dj Pk
2ajk I P / ajk I
(A.27)

Finally, the phase field equation (15) is obtained by
summing up all possible phase change contributions.
According to Eq. (9) one obtains:

7
Z qjk

k (k#))
n
1 2
= Z { jk(PkV pj — PiV pi)
k(k#J) Tjk
1 n"
— —pipc(pk — i)+ —=pipk (s (A28
Zajk djk

which we set out to deduce.

Finally, let us ensure that the sum Z;':l pjlx, 1)
is conserved. This is equivalent to deriving from the
phase field equations that y_7_, p; = 0 is valid.

Bearing in mind that 7y = 7/, i = Ejj» Gjk =

ag; and mj = —my;, it is easily seen from (31) that
gjk = —q; is valid. Thus the sum }°_, p; can be
written as:
n n n
Sh=y Y
=1 j=lk (k%))
n n—1 n—1 n
=2 > awtd D ai
j=2k=I1 (k<j) J=1k=2 (k>j) (A29)
n n—1 n—1 n
D IKTEDD i
Jj=2 k=1 (k<j) j=1k=2 (k>}) (A30)
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n n—1 n—1

Y ey Y w

J=2 k=1 (k<j) k=1j=2 (j>k) (A31)
n n—1 n n—1

=D 2 ak—). D 4
J=2k=1 (k<j) j=2 k=1 (k<j)

n—1

Z @jk —gj1) =0

2k=1 (k<j)

=

J
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