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Abstract

The coupled eutectic growth of binary alloys was studied by means of phase-field models or boundary integral

methods for many years. The use of numerical methods discovered the remarkable variety of growth structures like

lamellae or different kinds of oscillating modes. In this work, the multi-phase-field method which is generally valid for

most kinds of transitions between multiple phases is applied to the eutectic growth problem. We simulated the

directional solidification of a binary eutectic during the initial transient state in 2 and 3 dimensions. The chosen phase

diagram of the eutectic alloy is asymmetric with a composition ratio between the two solid phases a and b of 0.82. The

2D simulations show stable lamella growth or unstable oscillating modes dependent on the number of b lamella

specified by explicit seeding at the bottom of the calculation domain. The undercooling at the growth front is evaluated

for different spacing and compared with the values obtained by the fundamental analysis for the steady-state growth via

the Jackson and Hunt model. For the regular lamella growth, the undercooling evaluated from the phase-field

simulations fits within 20% of the analytical values. 3D calculations show the fibrous growth structure. This is in

agreement with the expectation because for small phase fractions of b the fibrous structure possesses a smaller total

amount of surface energy compared with lamellas and therefore should be preferred. For a larger number of fibres, they

tend to form a hexagonal arrangement which is usually observed by experiments. r 2002 Elsevier Science B.V. All

rights reserved.
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1. Introduction

Reduction of total free energy is the basic
driving force of any phase transformation process.
Based on this principle, the phase-field method has
been applied to simulate microstructure evolution

during materials processing [1–5]. The applications
reach from the investigation of morphological
instabilities, e.g. dendritic growth to structural
phase transitions in solid–solid systems. Several
phase-field or boundary integral methods already
exist for the simulation of eutectic solidification [6–
9,13]. The multi-phase-field method [10,11] is a
natural extension of the basic phase-field concept
to the interaction of more than two individual
phases. It offers the perspective for the simulation
of ternary and higher order eutectics as well.
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In this paper, we will apply the multi-phase-field
method to eutectic solidification of a binary alloy
but further development will be directed towards
multi-component and multi-phase systems.

2. The multi-phase-field model

We consider a system of N field variables fa

ð~xx; tÞ, a ¼ 1;y; N; 0pfap1: In our context, these
variables may be identified with the local phase
state (liquid or solid matrix) but several individual
grains of a one solid phase identified by their
orientation can exist. In the bulk of one grain a
fa ¼ 1 holds, on grain boundaries between grain a
and grain b fa þ fb ¼ 1 and fao1; fbo1: In
general, the sum over all phases equals 1.

We use the approach described in Ref. [11]
which leads to a set of phase-field equations for
each field variable fa
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The constants are: sab is the boundary energy (J/
cm2), Zab the boundary thickness (cm), Gab the
enthalpy difference between the bulk phases (J/
cm3) and mab the mobility of boundary (cm4/Js). In
Eq. (1), we have set all boundaries to the same
thickness Zab ¼ Z and neglected higher order triple
point contributions [10,11].

Coupling with concentration c (for details see
Ref. [3]) occurs only via the difference in the Gibbs
free energy DGðcÞ which is expressed by a linear
relationship DG ¼ DSf (T eqðcÞ � T). T eq denotes
the equilibrium temperature for a given composi-
tion and can be derived from the phase diagram. T

is the actual temperature. We describe solute
diffusion by a mixture composition description

’c ¼
XN

i¼1

rFiDirci; ð2Þ

where ci denotes the concentration in phase i with
its diffusion coefficient Di: Within the interfaces,

local equilibrium according to

ci ¼ kijcj ; 8i; j ð3Þ

is set. kij denotes the partition coefficient between
the two phases i and j: Within the bulk of each
phase Eq. (2) simplifies to Fix’s second law.

3. Simulation results

Based on the multi-phase-field model described
above we have simulated the solidification of a
binary eutectic model alloy with the two solid
phases a and bU We choose an asymmetric phase
diagram with an a=b ratio of 0.82. Solidus and
liquidus lines are defined by their slopes at the
eutectic point: masol ¼ �100 K/at%, maliq ¼
�10 K/at% and mbsol ¼ 100 K/at%, mbliq ¼ 5K/
at%. Temperature is normalized to the eutectic
temperature. Eutectic composition is set to
cEut=cb ¼ 0:2; cb ¼ 5 at%. Diffusion coefficient in
the melt is set to 10�5cm2/s and we neglect
diffusion in the solid. The surface energy is
10�5J/cm2 for all interfaces. All simulations were
performed for directional solidification conditions,
e.g. constant temperature gradient (50 K/cm) and
cooling rate (0.005 K/s). To save computer time,
we implemented a moving grid algorithm which
adapts the calculation domain to the moving
solid–liquid interface.

As initial conditions for the simulation we have
set a fixed number of b-nuclei embedded in the a-
matrix at arbitrary positions at the bottom of the
calculation domain. The number of nuclei defines
the minimal spacing l within one simulation run
because the nucleation of new grains is not taken
into account. Adjustment to larger l values is
possible since individual lamella can disappear.

Fig. 1a shows a result for a 2D simulation run
with 14 initial b nuclei. A stable lamella growth
structure with l ¼ 25 mm has been established after
400 mm of solidification. We measured the spacing
by evaluating the distances between isolines in the
concentration field for every cutting plane normal
to the growth direction. From the plot of the
variance s/lS in the distribution of the lamella
distances against the height of the cutting plane,
the oscillation frequency and the stability of the
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growth mode can be derived (see Fig. 2b). Since we
start with an arbitrary lamella configuration even
the stable spacing shows oscillations in the
transient stage but the amplitude decreases stea-
dily. The decrease in amplitude clearly indicate
stable growth for the spacing of l ¼ 25 mm.

Fig. 1b shows the result for 7 initial b nuclei.
Now the oscillation amplitude increases during the
first stages of the solidification. At the end of the
simulation run it turned out to be saturated but a
longer simulation time would be necessary to
prove this. The oscillation period of 12.5 mm for
the unstable case, derived by fitting the curves in
Fig. 2b, is larger than that for the stable growth
which is 10.7 mm. Their ratio of 1.17 is nearly the
ratio of the mean spacing which is 1.14. Since
lateral diffusion accounts for the oscillation an
increasing period can be expected for larger mean
spacing.

For the solid–liquid interface, we derived in the
case of Fig. 1(a) an average undercooling of
DT ¼ 0:11 K at the end. Compared to this value
the calculation after Jackson and Hunt [12] gives
for the interface undercooling a value of
DT ¼ 0:13 K which is an agreement within 20%.

According to the JH-analysis a fixed value of l
is correlated with a fixed interfacial undercooling.
Slight variations of l can be obtained in the
simulation by varying the domain width for a
constant number of initial seeds. Stable lamella
growth was observed for l between 19 and 25 mm
(Fig. 2a). The transition between stable and
oscillating growth takes place for l > 26 mm.
Simultaneously, the interface undercooling varies
with lU For the undulated interface in the case of
the oscillating mode the undercooling is between
0.1 and 0.18 K along the interface. It exceeds the

Fig. 1. (a) Stable lamella growth and (b) oscillating growth

mode. The concentration is colour coded. White represents b
phase, black the a phase. Size of the whole calculation domain

is 200mm� 426mm. Growth velocity is 1mm/s.

Fig. 2. (a) Interface undercooling as a function of lamella width, respectively, domain size. Line: Jackson–Hunt model. Symbols:

Phase-field simulations. For lamella width >25mm a transition of stable lamella growth to oscillating growth occurs. (b) Standard

deviation s of the mean lamella spacing as a function of growth height for the structures shown in Fig. 1. For stable growth initial

oscillations decrease.
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maximum value of B0.12 K for stable growth (see
Fig. 2a).

For the chosen type of asymmetric phase
diagram with a a=b phase fraction ratio of 0.82
fibrous growth will be expected instead of lamella
structures. Fig. 3 shows the simulated structure for
1, 5 and 100 s of growth. All simulation parameters
are the same as for the simulation run shown in
Fig. 1(a) except for the dimensions of the calcula-
tion domain and the arrangement of the b seeds.
As expected a fibre structure occurs. The large
undulated solid–liquid interface can be clearly seen
in the initial stages. After 100 s a FCC array with
13 b fibres has been formed. The mean distance
between the fibres is in this case l ¼ 18 mm. This is
smaller than l ¼ 25 mm for the 2D case. It must be
noted that in the 3D case the constrains due to the
boundary conditions are larger which certainly
effects the selection of the spacing. This can be
seen in Fig. 4, where the arrangement for three

different growth velocities is shown. For the
largest velocity of 2 mm/s a finer structure with
21.5 fibres has been formed after 100 s. For this
larger number of fibres the array tends more
towards a hexagonal arrangement which is usually
observed by experiments.
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Fig. 3. Fibrous structure obtained in 3D after 1, 5, 100 s of growth. The initial stage has an undulated solid–liquid interface because the

spacing is far from the stable distance. The surface becomes smoother when it tends towards the steady state.

Fig. 4. Top view on the 3D growth structures for three different growth velocities 0.5, 1, 2mm/s. With increasing velocity the structure

becomes finer and the array tends towards a hexagonal arrangement.
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