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Phase field simulations of the peritectic solidification of Fe—C
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Abstract

The microstructure evolution during the peritectic solidification of Fe—C is simulated using a multiphase field
approach. The peritectic transformation in steel is a diffusion controlled non-equilibrium process with the three phases
liquid, ferrite and austenite involved. Phase fields are defined for each of the three phases. A set of phase field equations is
derived from a free energy formulation, whereas the carbon diffusion equation is derived separately by a solute diffusion
model. Both phase field and solute diffusion model as well as their coupling will be discussed. Simulation results will be
presented showing the growth of the primary ferrite and the subsequent peritectic transformation, in which the austenitic
phase is formed. ( 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

Steels with low carbon concentration solidify in a peritectic transformation [1,2]. The primary solid phase
which forms from the melt is the d-ferrite. This phase has a low carbon solubility and usually solidifies in
dendritic morphology. Below the peritectic temperature (+1766 K) the ferrite reacts with the residual melt to
form the c-austenite. Assuming moderate cooling rates, both the growth of the ferrite phase and the
subsequent peritectic transition are diffusion controlled processes. Thermodynamic equilibrium conditions
can only be assumed at the phase interfaces. The binary phase diagram of Fe—C with its metastable
extensions is shown in Fig. 1. In order to predict the microstructure evolution during the described
transformations, a model has to consider the following aspects:

f multiphase systems
f non-equilibrium and metastable equilibrium conditions
f dendritic growth
f nucleation of new phases
f solute diffusion
f coupling between phase transformations and solute diffusion.

*Fax: #49 241 38578; e-mail: janin@access.rwth-aachen.de.

0022-0248/99/$ — see front matter ( 1999 Elsevier Science B.V. All rights reserved.
PII: S 0 0 2 2 - 0 2 4 8 ( 9 8 ) 0 1 0 0 9 - 4



Fig. 1. Fe—C phase diagram with metastable extensions [8].

A microstructure simulation model based on the phase field method which accounts for these aspects in
binary alloys has recently been developed by ACCESS [3]. The principles of this model will be discussed in
the following section. Simulation results of the peritectic solidification of Fe—C are presented in Section 3.

2. The multi phase field approach with an integrated model for solute diffusion

In the standard formulation of the phase field method, the structure of a system is described by a single
phase field /(x, t), which is defined as a continuous function in space and time. /"0 denotes “phase A” (e.g.
liquid) and /"1 denotes “phase B” (e.g. solid) [4,5]. In order to extend the phase field method to polyphase
solidification, a multiphase field model has been developed [6]. This model is based on multiple phase fields
/
i
(x, t), i"1, 2, n for n different phases, e.g. in the case of peritectic solidification of steel for the liquid, the

ferrite and the austenite. In polycrystal simulations also different grains of the same phase may be
distinguished by individual phase fields. In the multiphase model /

i
"1 denotes “phase i” and /

i
"0 “not

phase i”. As a natural constraint, the sum of the phase fields equals 1. In the diffuse interface regions, the
phase fields vary continuously between 0 and 1 as known from the standard phase field model.

A local free energy functional fK is defined with p
ik

being the interfacial energies, g
ik

the interfacial
thicknesses, *S

ik
the entropy of fusion and *¹

ik
the local undercooling with respect to the phases i and k.
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The gradient term in the free energy formulation drives the interface to a diffusive state. This term is also
sensitive on curvature. The gradients are weighted by the density of the counter phases in order to distinguish
the contributions of the different dual phase combinations ik. Each contribution ik is related to an individual
e
ik

and equals zero if one of the phases is absent. The second term determines the potential energy including
the thermodynamic driving force m

ik
.

Minimization of the functional (1) and definition of kinetic parameters q
ik
"*S

ik
g
ik
/k

ik
with k

ik
being the

interface mobility leads to the kinetic equations:
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A major advantage of this approach is, that it allows the specification of the physical parameters
(p

ik
, *S

ik
, *¹

ik
, k

ik
) individually for each interface. In this formulation triple points are described by super-

position of pairwise interactions of the phases. A rigorous treatment of multiphase systems would lead to
additional triple point contributions, which are neglected here. This is discussed in Ref. [7]. As known from
other phase field models, anisotropy can be considered by orientation dependent kinetic parameters or by
orientation dependent interfacial energies. Seeds of new phases are generated as function of a critical local
undercooling and a random term by an additional nucleation model.

Solute diffusion is calculated within the whole multiphase system. To allow compatibility with the
multi-phase-field approach, the diffuse interfaces regions where two or more phases coexist are taken into
account by defining a mixture concentration:

c(x, t)"
N
+
i

/
i
(x, t) ) c

i
(x, t) (3)

with c
i
being the concentration of a component in phase i. In the bulk of phase i, the concentrations c and

c
i
are identical, whereas at the interface with a second phase j the mixture concentration c changes steeply but

continuously from c
i
to c

j
. Within the diffuse interface areas the concentrations are related by the equilibrium

partition coefficients k
ij
, which usually are a function of temperature:

c
i
(x, t)"k

ij
(¹) ) c

j
(x, t). (4)

The partition coefficients are defined by the partition of the equilibrium concentrations. For the non-
equilibrium state we locally assume the same partition for all concentrations within the interface. This
corresponds in first order approximation with the same degree of local undercooling for both phases i and j;
*
T
(c

i
)"*

T
(c

j
). If the interface thickness is small compared to the diffusion length, Eq. (4) corresponds with

the assumption of local equilibrium at the interface in a sharp interface model.
To describe solute transport within different phases i, i"1,2, n with changing solubilities and diffusion

coefficients D
i
as well as across the phase boundaries we take the following approach:
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Choosing arbitrarily a reference phase R, obeying /
R
'0, all c
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It shall be emphasized that in this formulation solute redistribution due to continuous interface movement is
treated implicitly. No additional flux balances or source terms are required at the interfaces. The phase field
equations (Eq. (2)) and the concentration equation (Eq. (6)) are coupled by the common phase field
parameters /

i
, and the concentration dependent local undercooling term *¹(c, ¹). The undercooling is

defined by the deviation from the local equilibrium temperature ¹*
ij
, which can be deduced from the specific

phase diagram. In linear approximation we get
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Since the driving force should essentially be constant across the diffuse interface, high concentration
gradients may lead to numerical problems. For this reason the interface thickness has to be small compared
to the solutal diffusion length. However, this assumption often requires a very fine discretisation requiring
high computation times. To diminish this problem we average the driving force across the interface in
direction of the phase field gradient.

3. Simulations of the peritectic solidification of FeC

2D-simulations of the peritectic solidification of FeC have been carried out using the model described in
Section 2. The parameters for the calculation shown in Fig. 2 are c

0
"0.3 wt%, ¹Q "0.5 K/s,

D
L
"3]10~5 cm2/s, D

d
"6]10~6 cm2/s, Dc"10~6 cm2/s, p

ij
"2.04]10~4 J/cm2. Thermodynamic data

are taken in linear approximation from the metastable phase diagram of Fe—C depicted in Fig. 1. A grid of
150]150 cells with a spacing of 2 lm and a time step of +t"5]10~4 s are used and periodical boundary
conditions are applied. The growth of four ferritic particles during constant cooling has been simulated and
below the peritectic temperature single nuclei have been placed onto the interfaces to study the peritectic
transformation. The distances of the particles have been selected in the order of typical secondary dendrite
arm spacings and anisotropy has been not considered in this calculation. During the growth of the ferritic

Fig. 2. Simulation of the peritectic solidification in Fe—C. The carbon concentration is illustrated by the grey scale. The peritectic
c-austenite nucleated on the primary d-ferrite grows around it by simultaneous consumption of both the ferrite and the liquid.
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Fig. 3. Simulation of a directional peritectic solidification process. The morphology of the primary ferrite becomes instable and
a dendrite evolves. Beyond the peritectic temperature austenite is formed and coats the dendrite.

particles the melt becomes enriched with carbon due to the low carbon solubility of the ferrite phase. Since
the carbon content of the austenite (+0.16 wt%) at this temperature is higher than the ferrite’s concentration
(+0.1 wt%) but less than the liquid’s concentration (+0.51 wt%), the austenite grows fastest where liquid
and ferrite can react in direct contact. Thus, the austenite grows around the ferrite. This is the typical
peritectic behaviour known from both experiment and theory [1,2]. When the austenite isolates the ferrite
from the liquid, ferrite and liquid can no longer react in this direct kind of peritectic reaction. However, the
peritectic transition continuous indirectly by solid state diffusion through the austenite layer.

In another simulation (Fig. 3) directional growth is investigated with an imposed temperature gradient of
+¹"140 K/cm and a cooling rate ¹Q "!3.0 K/s on a grid with 300]700 cells. Anisotropy is now
considered by an orientation dependent kinetic parameter q

ik
(H). During the growth of the ferrite the

redistribution of carbon leads to morphological instability and a dendrite evolves. Below the peritectic
temperature the austenitic seeds are generated by a nucleation model in dependence on the local undercool-
ing and a random term. The austenite grows around the undercooled part of the ferritic dendrite, consuming
both the liquid and the ferrite.

4. Conclusions

A multiphase phase field method with an integrated diffusion model for binary alloys has been developed
and applied to simulate the microstructure evolution during the peritectic transformation of Fe—C. The
model enables the specification of individual physical parameters for all three phases (liquid, ferrite, austenite)
and their interface combinations (liquid/ferrite, liquid/austenite, ferrite/austenite). In order to simplify
considerations of complex phase diagrams, the solute diffusion equation is not derived from the free energy
functional but described using partition coefficients at the interfaces. The driving force for phase transitions is
defined by the local undercooling, which is dependent on the local concentrations within the different phases.

Simulation of the peritectic solidification of FeC have been carried out for realistic cooling conditions. The
simulation results reproduce well the expected peritectic phenomena and illustrate the strong interaction
between carbon redistribution and peritectic phase transformation. Dendritic growth of the primary ferrite
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phase has been simulated choosing physical instable conditions. However, high concentration gradients
within the diffuse interface regions still lead to numerical problems. In order to avoid these instabilities the
interface thickness has to be small compared to the solutal diffusion length. Therefore, dendrites with low
supersaturations require very high numerical resolution leading to high CPU-times. A first step to overcome
this problem was the definition of an average driving force across the interface in direction of the phase field
gradient.

In related activities the same model has successfully been applied to simulate different aspects of eutectic
solidification [9,10].
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